CS-565 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

5. Corner Detection

Corners Structure Tensor Corner Detection Scale Space

Corners

▶ Just like edges, corners are perceptually important.

- More compact summary of an image since corners are fewer than edge pixels.
- A patch around a corner pixel is different from all other surrounding patches.

Figure: A patch containing a corner is different from all surrounding patches. Blue squares represent patches similar to the red patch. Green squares represent patches different from the red patch. Author: N. Khan (2021)

How to compare patches SSD

For two patches P and Q of size $m \times n$ pixels, their dissimilarity can be computed using a *sum-of-squared distances*

$$SSD(P,Q) = \sum_{i=1}^{m} \sum_{j=1}^{n} (P_{ij} - Q_{ij})^{2}$$
 (1)

Alternatively, weighted dissimilarity can be computed as

$$SSD(P,Q) = \sum_{i=1}^{m} \sum_{i=1}^{n} w_{ij} (P_{ij} - Q_{ij})^{2}$$
 (2)

where weight w_{ii} determines the importance of location (i, j).

 For example, Gaussian weights give more importance to the central pixel difference.

Taylor's Approximation for 2D Functions

▶ Recall that Taylor's approximation for 1D functions is

$$f(x+u) = f(x) + \frac{u}{1!}f'(x) + \frac{u^2}{2!}f''(x) + O(u^3)$$
 (3)

► For 2D functions, a 2nd-order Taylor's approximation is

$$f(x+u,y+v) \approx f(x,y) + \underbrace{\frac{u}{1!}f_{x}(x,y) + \frac{v}{1!}f_{y}(x,y)}_{1\text{st-order}} + \underbrace{\frac{u^{2}}{2!}f_{xx}(x,y) + \frac{v^{2}}{2!}f_{yy}(x,y) + \frac{2uv}{2!}f_{xy}(x,y)}_{2\text{nd-order}}$$

- Let us consider patches of size 3×3 although the method works for patches of any size and shape.
- \triangleright The color value of a pixel displaced from (x, y) by the direction vector $d = (u, v)^T$ is I(x + u, y + v).

Nazar Khan Computer Vision 5/21

 \triangleright Weighted SSD between a patch at (x, y) and a patch displaced by the direction vector $\mathbf{d} = (u, v)^T$ is computed as

$$SSD(u,v) = \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (I(i+u,j+v) - I(i,j))^2$$

Using a 1st-order Taylor's approximation

$$I(i+u,j+v) \approx I(i,j) + uI_x(i,j) + vI_y(i,j)$$

Weighted SSD can be approximated as

$$SSD(u, v) \approx \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (I(i + u, j + v) - I(i, j))^{2}$$

$$= \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (I(i, j) + uI_{x}(i, j) + vI_{y}(i, j) - I(i, j))^{2}$$

$$= \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (uI_{x}(i, j) + vI_{y}(i, j))^{2} = \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (\mathbf{d}^{T} \nabla I_{ij})^{2}$$

$$= \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} (\mathbf{d}^{T} \nabla I_{ij}) (\mathbf{d}^{T} \nabla I_{ij})^{T} = \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} \mathbf{d}^{T} \nabla I_{ij} \nabla I_{ij}^{T} \mathbf{d}$$

$$= \mathbf{d}^{T} \left(\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{ij} \nabla I_{ij} \nabla I_{ij}^{T} \right) \mathbf{d} = \mathbf{d}^{T} A \mathbf{d}$$

Nazar Khan Computer Vision 7/21

▶ The 2×2 matrix A is a weighted summation of the outer-products

$$\nabla I_{ij} \nabla I_{ij}^{\mathsf{T}} = \begin{bmatrix} I_{\mathsf{x}}^2 & I_{\mathsf{x}} I_{\mathsf{y}} \\ I_{\mathsf{x}} I_{\mathsf{y}} & I_{\mathsf{y}}^2 \end{bmatrix}_{ij}$$

► For Gaussian weights, A can be computed via Gaussian convolution

$$A = \begin{bmatrix} G_{\rho} * I_{x}^{2} & G_{\rho} * I_{x}I_{y} \\ G_{\rho} * I_{x}I_{y} & G_{\rho} * I_{y}^{2} \end{bmatrix}$$

- In this form A is known as the structure tensor.
- ▶ The structure tensor plays an important role in other areas of computer vision as well.

Corner Detection via Structure Tensor

- ▶ Basic idea: To find if pixel (x, y) is a corner, first find the direction in which patches become most dissimilar.
- ▶ That is, the direction $\mathbf{d} = (u, v)^T$ that maximises the SSD $\mathbf{d}^T A \mathbf{d}$ from the patch centered at (x, y).

$$\mathbf{d}^* = \arg\max_{\mathbf{d}} \mathbf{d}^T A \mathbf{d} \text{ s.t. } \|\mathbf{d}\| = 1$$

where constraint $\|\mathbf{d}\| = 1$ ensures a non-trivial solution.

- ▶ Using the method of Lagrange multipliers, d^* is the eigenvector of A corresponding to the larger eigenvalue (Take-home Quiz 1).
- ▶ The SSD in the direction of any eigenvector is the corresponding eigenvalue. Prove it.

Nazar Khan Computer Vision 9/21

Corner Detection via Structure Tensor

▶ What do the eigenvalues of the structure tensor reveal about the local structure around a pixel?

$$\begin{split} \lambda_{\text{large}} &\approx \lambda_{\text{small}} \approx 0 \implies \text{flat region} \\ \lambda_{\text{large}} &\gg \lambda_{\text{small}} \approx 0 \implies \text{edge} \\ \lambda_{\text{large}} &> \lambda_{\text{small}} \gg 0 \implies \text{corner} \end{split}$$

▶ So a simple corner detection criterion could be $\lambda_{\text{small}} > \tau$.

Nazar Khan Computer Vision 10 / 21

Corner Detection via Structure Tensor

- But eigenvalue computation is a little expensive.
- Using the facts that

1.
$$det(A) = A_{11}A_{22} - A_{12}^2 = \lambda_{large}\lambda_{small}$$
, and

2.
$$trace(A) = A_{11} + A_{22} = \lambda_{large} + \lambda_{small}$$

popular corner detectors avoid eigenvalue computations.

▶ Popular corner detectors use a cornerness measure and then a detection criterion.

Method	Cornerness Measure	Detector
Harris	$\frac{det(A)}{trace(A)}$	trace(A) > au
Rohr	det(A)	$det(A) > \tau$

▶ To avoid multiple detections, non-maxima suppression must be performed on the cornerness values in 8-neighourhoods or larger.

Nazar Khan Computer Vision 11/21 **Input**: Image 1.

Parameters:

- 1) Noise smoothing scale σ .
- 2) Gradient smoothing scale ρ (should be greater than σ),
- 3) Threshold τ .
 - 1. Compute Gaussian derivatives at noise smoothing scale σ

$$I_X = \frac{\partial G_{\sigma}}{\partial x} * I$$
 and $I_Y = \frac{\partial G_{\sigma}}{\partial y} * I$

2. Compute the products

$$I_x^2$$
, I_y^2 and $I_x I_y$

3. Smooth the products at gradient smoothing scale ρ

$$G_{\rho}*I_{x}^{2}$$
, $G_{\rho}*I_{y}^{2}$ and $G_{\rho}*I_{x}I_{y}$

and construct structure tensor A at every pixel.

Corner Detection Algorithm

4. Compute cornerness C(i,j) at every pixel as

Harris		Rohr
C _{ij} =	$=\frac{A_{11}A_{22}-A_{12}^2}{A_{11}+A_{22}}$	$C_{ij} = A_{11}A_{22} - A_{12}^2$

- **5**. Perform non-maxima suppression in 8-neighbourhood on cornerness image *C*.
- 6. Find corner pixels by thresholding remaining local maxima via

Harris		Rohr
	$trace(A) = A_{11} + A_{22} > \tau$	$det(A) = A_{11}A_{22} - A_{12}^2 > \tau$

Figure: Harris corners detected with $\sigma=0.2$, $\rho=2$ and $\tau=90$ th percentile of trace values. Author: N. Khan (2018)

Determinant(A)

Original

Trace(A)

Figure: Harris corners detected with $\sigma=0.5$, $\rho=2$ and $\tau=80$ th percentile of trace values. Author: N. Khan (2018)

Figure: Corners detected by Rohr's method with $\sigma=1$, $\rho=6$ and $\tau=98$ th percentile of determinant values for **top row** and 95th for **bottom row**. Author: N. Khan (2018)

Figure: Corners detected by Rohr's method with $\rho=6$ and $\tau=95$ th percentile of determinant values. Noise smoothness scale was $\sigma=3$ for **top row** and $\sigma=4$ for **bottom row**. Author: N. Khan (2018)

rners Structure Tensor Corner Detection Scale Space

Corners depend on scale

- ▶ Structure tensors and therefore corner detection are not scale invariant.
- ▶ Therefore, corner detection should take place at multiple scales.
- ▶ This leads to the concept of a scale space.

Nazar Khan Computer Vision 18/21

Scale Space via Gaussian Pyramids

Figure: A Gaussian pyramid with 3 levels and 5 smoothing scales. **Top to bottom**: Subsampling in both dimensions by factor 2^i for $i = 0, \dots, 2$. **Left to right**: Gaussian blurring with $\sigma = \sqrt{2}^{j} \sigma_0$ for j = 0, ..., 4 and $\sigma_0 = \sqrt{2}$. Author: N. Khan (2018)

Computer Vision 19/21 orners Structure Tensor Corner Detection Scale Space

Scale Space via Gaussian Pyramids

Figure: Corner detection in scale space obtained via Gaussian pyramids. Some corners are detected only at certain resolutions and certain smoothness scales. Corners that *persist across resolutions and smoothness scales* are called strong or stable corners. Author: N. Khan (2018)

Nazar Khan Computer Vision 20 / 21

Scale Space via Gaussian Pyramids

```
function makeGaussianPyramid(I,num_levels,num_scales,k,\sigma_0) for i=0 to num_levels-1 J = \text{subsample}(I,\frac{1}{2^i}) for s=0 to num_scales-1 \sigma = k^s\sigma_0 GP[i,s] = J*G_\sigma
```

Nazar Khan Computer Vision 21 / 21