CS-565 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
5. Corner Detection

Corners

- Just like edges, corners are perceptually important.
- More compact summary of an image since corners are fewer than edge pixels.
- A patch around a corner pixel is different from all other surrounding patches.

Vertical edge

Horizontal edge

Corner

Corner

Figure: A patch containing a corner is different from all surrounding patches. Blue squares represent patches similar to the red patch. Green squares represent patches different from the red patch. Author: N. Khan (2021)

How to compare patches

- For two patches P and Q of size $m \times n$ pixels, their dissimilarity can be computed using a sum-of-squared distances

$$
\begin{equation*}
S S D(P, Q)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(P_{i j}-Q_{i j}\right)^{2} \tag{1}
\end{equation*}
$$

- Alternatively, weighted dissimilarity can be computed as

$$
\begin{equation*}
S S D(P, Q)=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j}\left(P_{i j}-Q_{i j}\right)^{2} \tag{2}
\end{equation*}
$$

where weight $w_{i j}$ determines the importance of location (i, j).

- For example, Gaussian weights give more importance to the central pixel difference.

Taylor's Approximation for 2D Functions

- Recall that Taylor's approximation for 1D functions is

$$
\begin{equation*}
f(x+u)=f(x)+\frac{u}{1!} f^{\prime}(x)+\frac{u^{2}}{2!} f^{\prime \prime}(x)+O\left(u^{3}\right) \tag{3}
\end{equation*}
$$

- For 2D functions, a 2nd-order Taylor's approximation is

$$
\begin{aligned}
f(x+u, y+v) \approx & f(x, y)+\underbrace{\frac{u}{1!} f_{x}(x, y)+\frac{v}{1!} f_{y}(x, y)}_{1 \text { st-order }} \\
& +\underbrace{\frac{u^{2}}{2!} f_{x x}(x, y)+\frac{v^{2}}{2!} f_{y y}(x, y)+\frac{2 u v}{2!} f_{x y}(x, y)}_{2 \text { nd-order }}
\end{aligned}
$$

Structure Tensor

- Let us consider patches of size 3×3 although the method works for patches of any size and shape.
- The color value of a pixel displaced from (x, y) by the direction vector $\mathbf{d}=(u, v)^{T}$ is $I(x+u, y+v)$.

Structure Tensor

- Weighted SSD between a patch at (x, y) and a patch displaced by the direction vector $\mathbf{d}=(u, v)^{T}$ is computed as

$$
S S D(u, v)=\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{i j}(I(i+u, j+v)-I(i, j))^{2}
$$

- Using a 1st-order Taylor's approximation

$$
I(i+u, j+v) \approx I(i, j)+u l_{x}(i, j)+v l_{y}(i, j)
$$

Structure Tensor

- Weighted SSD can be approximated as

$$
\begin{aligned}
& S S D(u, v) \approx \sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{i j}(I(i+u, j+v)-I(i, j))^{2} \\
& =\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{i j}\left(I(i, j)+u I_{x}(i, j)+v l_{y}(i, j)-I(i, j)\right)^{2} \\
& =\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{i j}\left(u I_{x}(i, j)+v l_{y}(i, j)\right)^{2}=\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{i j}\left(\mathbf{d}^{T} \nabla l_{i j}\right)^{2} \\
& =\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{i j}\left(\mathbf{d}^{T} \nabla l_{i j}\right)\left(\mathbf{d}^{T} \nabla l_{i j}\right)^{T}=\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{i j} \mathbf{d}^{T} \nabla l_{i j} \nabla l_{i j}^{T} \mathbf{d} \\
& =\mathbf{d}^{T}\left(\sum_{i=x-1}^{x+1} \sum_{j=y-1}^{y+1} w_{i j} \nabla l_{i j} \nabla l_{i j}^{T}\right) \mathbf{d}=\mathbf{d}^{T} A \mathbf{d}
\end{aligned}
$$

Structure Tensor

- The 2×2 matrix A is a weighted summation of the outer-products

$$
\nabla I_{i j} \nabla I_{i j}^{T}=\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]_{i j}
$$

- For Gaussian weights, A can be computed via Gaussian convolution

$$
A=\left[\begin{array}{cc}
G_{\rho} * I_{x}^{2} & G_{\rho} * I_{x} I_{y} \\
G_{\rho} * I_{x} I_{y} & G_{\rho} * I_{y}^{2}
\end{array}\right]
$$

- In this form A is known as the structure tensor.
- The structure tensor plays an important role in other areas of computer vision as well.

Corner Detection via Structure Tensor

- Basic idea: To find if pixel (x, y) is a corner, first find the direction in which patches become most dissimilar.
- That is, the direction $\mathbf{d}=(u, v)^{T}$ that maximises the SSD $\mathbf{d}^{T} A \mathbf{d}$ from the patch centered at (x, y).

$$
\mathbf{d}^{*}=\arg \max _{\mathbf{d}} \mathbf{d}^{T} A \mathbf{d} \text { s.t. }\|\mathbf{d}\|=1
$$

where constraint $\|\mathbf{d}\|=1$ ensures a non-trivial solution.

- Using the method of Lagrange multipliers, \mathbf{d}^{*} is the eigenvector of A corresponding to the larger eigenvalue (Take-home Quiz 1).
- The SSD in the direction of any eigenvector is the corresponding eigenvalue. Prove it.

Corner Detection via Structure Tensor

- What do the eigenvalues of the structure tensor reveal about the local structure around a pixel?

$$
\begin{aligned}
& \lambda_{\text {large }} \approx \lambda_{\text {small }} \approx 0 \Longrightarrow \text { flat region } \\
& \lambda_{\text {large }} \gg \lambda_{\text {small }} \approx 0 \Longrightarrow \text { edge } \\
& \lambda_{\text {large }}>\lambda_{\text {small }} \gg 0 \Longrightarrow \text { corner }
\end{aligned}
$$

- So a simple corner detection criterion could be $\lambda_{\text {small }}>\tau$.

Corner Detection via Structure Tensor

- But eigenvalue computation is a little expensive.
- Using the facts that

1. $\operatorname{det}(A)=A_{11} A_{22}-A_{12}^{2}=\lambda_{\text {large }} \lambda_{\text {small }}$, and
2. $\operatorname{trace}(A)=A_{11}+A_{22}=\lambda_{\text {large }}+\lambda_{\text {small }}$ popular corner detectors avoid eigenvalue computations.

- Popular corner detectors use a cornerness measure and then a detection criterion.

Method	Cornerness Measure	Detector
Harris	$\frac{\operatorname{det}(A)}{\operatorname{trace}(A)}$	$\operatorname{trace}(A)>\tau$
Rohr	$\operatorname{det}(A)$	$\operatorname{det}(A)>\tau$

- To avoid multiple detections, non-maxima suppression must be performed on the cornerness values in 8-neighourhoods or larger.

Corner Detection

Algorithm

Input: Image I.

Parameters:

1) Noise smoothing scale σ,
2) Gradient smoothing scale ρ (should be greater than σ),
3) Threshold τ.
1. Compute Gaussian derivatives at noise smoothing scale σ

$$
I_{x}=\frac{\partial G_{\sigma}}{\partial x} * I \quad \text { and } \quad I_{y}=\frac{\partial G_{\sigma}}{\partial y} * I
$$

2. Compute the products

$$
I_{x}^{2}, \quad I_{y}^{2} \text { and } I_{x} I_{y}
$$

3. Smooth the products at gradient smoothing scale ρ

$$
G_{\rho} * I_{x}^{2}, \quad G_{\rho} * I_{y}^{2} \quad \text { and } \quad G_{\rho} * I_{x} I_{y}
$$

and construct structure tensor A at every pixel.

Corner Detection

Algorithm

4. Compute cornerness $C(i, j)$ at every pixel as

Harris	Rohr
$C_{i j}=\frac{A_{11} A_{22}-A_{12}^{2}}{A_{11}+A_{22}}$	$C_{i j}=A_{11} A_{22}-A_{12}^{2}$

5. Perform non-maxima suppression in 8 -neighbourhood on cornerness image C.
6. Find corner pixels by thresholding remaining local maxima via

Harris	Rohr
$\operatorname{trace}(A)=A_{11}+A_{22}>\tau$	$\operatorname{det}(A)=A_{11} A_{22}-A_{12}^{2}>\tau$

Figure: Harris corners detected with $\sigma=0.2, \rho=2$ and $\tau=90$ th percentile of trace values. Author: N. Khan (2018)

Figure: Harris corners detected with $\sigma=0.5, \rho=2$ and $\tau=80$ th percentile of trace values. Author: N. Khan (2018)

Figure: Corners detected by Rohr's method with $\sigma=1, \rho=6$ and $\tau=98$ th percentile of determinant values for top row and 95th for bottom row. Author: N. Khan (2018)

Rohr Corners

Figure: Corners detected by Rohr's method with $\rho=6$ and $\tau=95$ th percentile of determinant values. Noise smoothness scale was $\sigma=3$ for top row and $\sigma=4$ for bottom row. Author: N. Khan (2018)

Corners depend on scale

All points will be classified as edges

Corner !

- Structure tensors and therefore corner detection are not scale invariant.
- Therefore, corner detection should take place at multiple scales.
- This leads to the concept of a scale space.

Scale Space via Gaussian Pyramids

Figure: A Gaussian pyramid with 3 levels and 5 smoothing scales. Top to bottom: Subsampling in both dimensions by factor 2^{i} for $i=0, \ldots, 2$. Left to right: Gaussian blurring with $\sigma=\sqrt{2}^{j} \sigma_{0}$ for $j=0, \ldots, 4$ and $\sigma_{0}=\sqrt{2}$. Author: N. Khan (2018)

Scale Space via Gaussian Pyramids

Figure: Corner detection in scale space obtained via Gaussian pyramids. Some corners are detected only at certain resolutions and certain smoothness scales. Corners that persist across resolutions and smoothness scales are called strong or stable corners. Author: N. Khan (2018)

Scale Space via Gaussian Pyramids

function makeGaussianPyramid(I,num_levels,num_scales, k, σ_{0}) for $i=0$ to num_levels-1
$J=\operatorname{subsample}\left(1, \frac{1}{2^{i}}\right)$
for $s=0$ to num_scales-1
$\sigma=k^{s} \sigma_{0}$
$G P[i, s]=J * G_{\sigma}$

