CS-453 Machine Learning

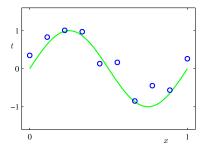
Nazar Khan

Department of Computer Science University of the Punjab

2. Curve Fitting and Regularization

Example: Polynomial Curve Fitting

Problem: Given N observations of input x_i with corresponding observations of output t_i , find function f(x) that predicts t for a new value of x.



First, let's generate some data.

Let's add some noise to the data

```
N=10;
x=0:1/(N-1):1;
t=sin(2*pi*x);
plot(x,t,'o');
```

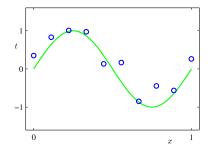
Notice that the data is generated through the function $\sin(2\pi x)$. Real-world observations are always 'noisy'.

n=randn(1,N)*0.3; t=t+n; plot(x,t,'o');

Real-world Data

Real-world data has 2 important properties

- 1. underlying regularity,
- individual observations are corrupted by noise.



Learning corresponds to discovering the underlying regularity of data (the $sin(\cdot)$ function in our example).

Polynomial curve fitting

 \triangleright We will fit the points (x, t) using a polynomial function

$$y(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

where M is the *order* of the polynomial.

- Function y(x, w) is a
 - non-linear function of the input x, but
 - a linear function of the parameters w.
- So our model y(x, w) is a *linear model*.

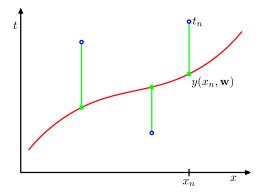
Polynomial curve fitting

- ► Fitting corresponds to finding the optimal w. We denote it as w*.
- ▶ Optimal w* can be found by *minimising* an *error function*

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2$$

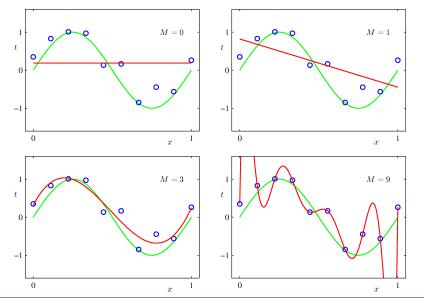
- ▶ Why does minimising E(w) make sense?
- ightharpoonup Can E(w) ever be negative?
- Can E(w) ever be zero?

Geometric Interpretation



Geometric interpretation of the sum-of-squares error function.

Power of a polynomial

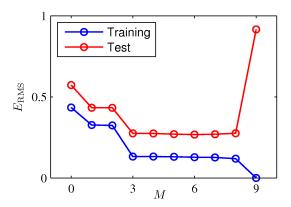


- Lower order polynomials can't capture the variation in data.
- ► Higher order leads to *over-fitting*.
 - Fitted polynomial passes *exactly* through each data point.
- But it oscillates wildly in-between.
- Gives a very poor representation of the real underlying function.
- Over-fitting is bad because it gives bad generalization.
 - Generalization refers to performance on unseen data.

- ▶ To check generalization performance of a certain w^* , compute $E(w^*)$ on a *new* test set.
- ► Alternative performance measure: root-mean-square error (RMS)

$$E_{RMS} = \sqrt{\frac{2E(w^*)}{N}}$$

- ► Mean ensures datasets of different sizes are treated equally. (How?)
- Square-root brings the squared error scale back to the scale of the target variable t.



Root-mean-square error on training and test set for various polynomial orders M.

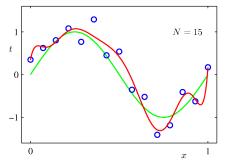
Paradox?

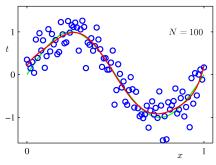
- ► A polynomial of order *M* contains all polynomials of lower order.
- ► So higher order should *always* be better than lower order.
- But, it's not better. Why?
 - Because higher order polynomial starts fitting the noise instead of the underlying function.

	M = 0	M = 1	M = 3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

- Typical magnitude of the polynomial coefficients is increasing dramatically as M increases.
- This is a sign of over-fitting.
- ► The polynomial is trying to fit the data points exactly by having larger coefficients.

- ▶ Large $M \implies$ more flexibility \implies more tuning to noise.
- ▶ But, if we have more data, then over-fitting is reduced.





- Fitted polynomials of order M=9 with N=15 and N=100 data points. More data reduces the effect of over-fitting.
- Nough heuristic to avoid over-fitting: Number of data points should be greater than k|w| where k is some multiple like 5 or 10.

How to avoid over-fitting

Since large coefficients ⇒ over-fitting, discourage large coefficents in w.

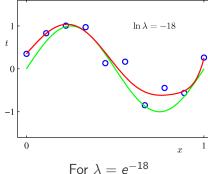
$$\tilde{E}(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 + \frac{\lambda}{2} ||w||^2$$

where $||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \cdots + w_M^2$ and λ controls the relative importance of the regularizer compared to the error term.

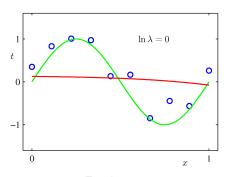
▶ Also called regularization, shrinkage, weight-decay.

How to avoid over-fitting

For a polynomial of order 9



For $\lambda = e^{-10}$ No over-fitting



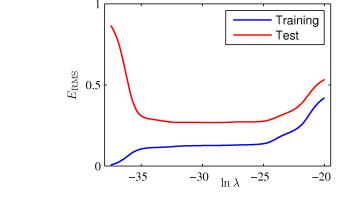
 $\label{eq:force_force} \text{For } \lambda = 1$ Too much smoothing (no fitting)

Effect of regularization

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

- \blacktriangleright As λ increases, the typical magnitude of coefficients gets smaller.
- We go from over-fitting ($\lambda=0$) to no over-fitting ($\lambda=e^{-18}$) to poor fitting ($\lambda=1$).
- ightharpoonup Since M=9 is fixed, regularization controls the degree of over-fitting.

Effect of regularization



Graph of root-mean-square (RMS) error of fitting the M=9 polynomial as λ is increased.