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Linear Regression

Regression

▶ We study the problem of regression.
▶ Predict continuous target variable(s) t given input variables vector x.

▶ Given training data {(x1, t1), . . . , (xN , tN)}, learn a function y(x,w) that
maps the inputs to the targets.

▶ Regression corresponds to finding the optimal parameters w∗.
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Linear Regression

Linear Regression

▶ The simplest regression model is linear regression.
▶ Linear in parameters w and linear in inputs x.

y(x,w) = wT x = w0 + w1x1 + · · ·+ wDxD

▶ Parameter w0 accounts for a fixed offset in the data and is called the bias
parameter.

▶ To incorporate bias, we have increased the dimensionality of x from D to
D + 1 by appending a 1 before it.

▶ This makes our input vector x ∈ RD+1 and parameter vector w ∈ RD+1.

Nazar Khan Machine Learning



Linear Regression

Linear Regression

▶ Linear models are significantly limited for practical problems – especially
for high dimensional inputs.

▶ However, they have nice analytical properties and they form the
foundation for more sophisticated machine learning approaches.
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Linear Regression

Linear Regression

▶ A more powerful model is linear in parameters w but non-linear in inputs x.

y(x,w) = wTϕ(x) = w0ϕ0(x) + w1ϕ1(x) + · · ·+ wMϕM(x)

▶ ϕ0(x) is usually set to 1 to make w0 the bias parameter.
▶ Note that now w ∈ RM+1 where M is not necessarily equal to D.
▶ The input x-space is non-linearly mapped to ϕ-space and learning takes

place in this new ϕ-space.
▶ While the learning remains linear, the learned mapping is actually

non-linear in x-space.
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Linear Regression

Minimization

f (x) = x2 + 1

x∗ = 0

Slope = df
dx

∣∣
1 = 2

x = 1 x + df
dx

∣∣
1

Slope = df
dx

∣∣
−1 = −2

x = −1x + df
dx

∣∣
−1

What is the slope/derivative/gradient at the minimizer x∗ = 0?
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Linear Regression

Minimization
Local vs. Global Minima

Global
Minimum

Local
Minimum

Local
Maximum

▶ Stationary point: where derivative is 0.
▶ A stationary point can be a minimum or a maximum.
▶ A minimum can be local or global. Same for maximum.
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Linear Regression

Linear Regression

▶ Error function of a regression model is

E (w) =
1
2

N∑
n=1

{tn − wTϕ(xn)}2

▶ Derivative with respect to w is

d

dw
E (w) =

N∑
n=1

{tn − wTϕ(xn)}ϕ(xn)
T

▶ At the minimiser w∗, the gradient must be equal to 0

d

dw
E (w)

∣∣∣∣
w∗

= 0
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Linear Regression

Linear Regression

▶ Equating gradient to the 0 vector

N∑
n=1

tnϕ(xn)
T − w∗T

(
N∑

n=1

ϕ(xn)ϕ(xn)
T

)
= 0 (1)

=⇒ w∗T =

(
N∑

n=1

tnϕ(xn)
T

)(
N∑

n=1

ϕ(xn)ϕ(xn)
T

)−1
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Linear Regression

▶ To convert to a pure matrix-vector notation without summations, let us
define the following N ×M matrix

Φ =


ϕ0(x1) ϕ1(x1) · · · ϕM−1(x1)
ϕ0(x2) ϕ1(x2) · · · ϕM−1(x2)

...
...

. . .
...

ϕ0(xN) ϕ1(xN) · · · ϕM−1(xN)


known as the design matrix.
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Linear Regression

Linear Regression

▶ It can be verified that the second term in Equation (1)∑N
n=1 ϕ(xn)ϕ(xn)

T = ΦTΦ. (Verify this.)
▶ By placing the target values in a vector t = (t1, . . . , tN)

T we can also
write the first term as ΦT t. (Verify this.)

▶ Now we can solve for the optimal weights as

w∗ = (ΦTΦ)−1ΦT︸ ︷︷ ︸
Φ†

t

▶ The M × N matrix Φ† is known as the Moore-Penrose pseudo-inverse or
simply pseudo-inverse of matrix Φ.

▶ It is a generalisation of matrix inverse to non-square matrices.
▶ For a square, invertible matrix Φ, it can be verified that Φ† = Φ−1.

(Verify this.)
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Linear Regression
Regularisation

▶ Error function for regularised linear regression is

E (w) =
1
2

N∑
n=1

{tn − wTϕ(xn)}2 +
λ

2
∥w∥2

where λ is the regularisation coefficient that controls the trade-off
between fitting and regularisation.

▶ This is also known as regularised least squares.
▶ Such regularisation is also called weight decay or parameter shrinkage

because it encourages weight/parameter values to remain close to 0.
▶ Regularisation allows more complex models to be trained on small

datasets without severe over-fitting.
▶ However, parameter λ needs to be set appropriately.
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Linear Regression
Regularised

▶ Optimal solution to regularised linear regression is

w∗ = (λI +ΦTΦ)−1ΦT t
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Linear Regression
Multivariate targets

▶ For the case of multivariate target vectors tn ∈ RK , we are interested in
the multivariate mapping y(x,W) = WTΦ(x).

▶ Column k of the M × K matrix W determines the mapping from ϕ(x) to
the kth output component.

▶ The optimal solution given training data {xn, tn}Nn=1 can be computed as

W∗ = Φ†T

where T =

tT1
...

tTN

 is the N × K matrix of target vectors.
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