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Linear Llassitication

Classification

» In the previous topic, regression, the goal was to predict continuous target
variable(s) t given input variables vector x.

» In classification, the goal is to predict discrete target variable(s) t given
input variables vector x.

> Input space is divided into decision regions.

\4

Boundaries between regions are called decision boundaries/surfaces.

» Training corresponds to finding optimal decision boundaries given training
data {(Xl, tl), RN (XN, tN)}.
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Linear Llassitication

Classification

> Assign x to 1-of-K discrete classes Cy.

» Most commonly, the classes are distinct. That is, x is assigned to one and
only one class.
» Convenient coding schemes for targets t are
> 0/1 coding for binary classification.

» 1-of-K coding for multi-class classification. Example, for x belonging to
class 3, the K x 1 target vector will be coded as t = (0,0,1,0,...,0)".
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Linear Llassitication

Linear Classification

> Like regression, the simplest classification model is linear classification.
» This means that the decision surfaces are linear functions of x, for example
y(x,w) =wTx+wy = 0.
» That is, a linear decision surface is a D — 1 dimensional hyperplane in
D-dimensional space.
» Data in which classes can be separated exactly by linear decision surfaces

is called linearly separable.
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Linear Llassitication

Linear Classification

Figure: Linearly separable data and corresponding linear decision boundaries.
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Linear Llassitication

Linear Classification
Generalized Linear Model

» The simplest linear regression model computes continuous outputs
y(x) = wx + wp.

> By passing these continuous outputs through a non-linear function £(-),
we can obtain discrete class labels.

y(x) = f(wx+ wo)

» This is known as a generalised linear model and f(-) is known as the
activation function.
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Linear Llassitication

Linear Classification
Generalized Linear Model

» Decision surfaces correspond to all inputs x where y(x) = const. This is
equivalent to the condition w’x 4+ wy = const.

» Therefore, decision surfaces are linear functions of the input x, even if f(-)
is non-linear.

» As before, we can replace x by a non-linear transformation ¢(x) and learn
non-linear boundaries in x-space by learning linear boundaries in ¢-space.
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Discriminant Functions

Linear Discriminant Functions
Two class case

» The simplest linear discriminant function is given by y(x) = w”x + wg
where w is called the weight vector and wy is called the bias.

» Classification is performed via the non-linear step

Cq if y(x) >0

| =
class(x) Co if y(x) <0

» We can view —wg as a threshold.
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Liscnminant Functions

Linear Discriminant Functions
Two class case

> Weight vector w is always orthogonal to the decision surface.
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» Proof: For any two points x4 and xg on the surface,
y(xa) = y(xg) =0 = w'(xq —xg) = 0. Since vector x4 — xg is along
the surface, w must be orthogonal.
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Discriminant Functions

Linear Discriminant Functions
Two class case

» Normal distance of any point x from decision boundary can be computed

as d = Y™
[[wl|
» Proof:
X =X + d—
[w]|
=wx+ wy = WTXJ_ + W()-|-CJ'WTl
—_— [wl|
y(x) y(x1)=0 ~——
[lwl|
IR
[w]|

» Normal distance to boundary from origin (x = 0) is IIWTOH
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Discriminant Functions

Linear Discriminant Functions

> For notational convenience, bias can be included as a component of the
weight vector via

w = (wp, w)
- (l,X)

y(x)=w"

X

X
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Liscnminant Functions

Linear Discriminant Functions
Multiclass case

» For K class classification with K > 2, we have 3 options

1. Learn K — 1 one-vs-rest binary classifiers.

2. Learn K(K — 1)/2 one-vs-one binary classifiers for every possible pair of
classes. Each point can be classified based on majority vote among the
discriminant functions.

3. Learn K discriminant functions y1, ..., ykx and then
class(x) = arg maxx yk(x).

» Options 1 and 2 lead to ambiguous classification regions.
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Discriminant Functions

Linear Discriminant Functions
Multiclass Ambiguity

One-vs-rest One-vs-One
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Figure: Ambiguity of multiclass classification using two-class linear discriminant
functions.
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Discriminant Functions

Linear Discriminant Functions
Multiclass case

» We can write the K-class discriminant function as
y(x) = WTx

» For learning, we can write the error function as

S
EOR) = 5 3" ylxn) — tal
1 nEI ) )
= 5D W% — 1) (W %y — )

n=1
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Liscnminant Functions

Linear Discriminant Functions
Least Squares Solution

» Optimal discriminant function parameters W* that minimize the SSE

E(W) are known as the least-squares-solution.
» Can be computed as
W* = XI'T
where X! is the pseudo-inverse of the design matrix X and T is the matrix
of target vectors.

> As before, we can also work in ¢-space where we will use the
corresponding matrix ® as the design matrix.
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Liscnminant Functions

Linear Discriminant Functions
Least Squares Solution

-8 -8

-4 22

o
~
S
[
0
L

-2 0 2 4 6 8

Figure: Least squares solution is sensitive to outliers.
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Fisher's Linear Discriminant

Fisher’'s Linear Discriminant
Two class case

> Project all data onto a single vector w.
» Classify by thresholding projected coefficents.
> Optimal vector is one which

> maximises between-class distance, and

» minimises within-class distance.
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Figure: Fisher's linear discriminant. Classify by thresholding projections onto a vector
w that maximises inter-class distance and minimises intra-class distances.
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Fisher's Linear Liscrnminant

Fisher’'s Linear Discriminant
Two class case

Xn . .
> Let my = Z"fviik be the mean vector of points belonging to class Cy.

» Projection of this mean is then my = w’ my.

» Variance around projected mean can be written as
2 _ T T )2
s, = Zneck(w Xp — W' mg)°.
> Suitability of any projection direction w can then be written as

Inter-class variance

J(w) =

Intra-class variance
(ma — mn)?
s?+ 53
(wimy —w’my)?

2nee,(WTxn —wTmi)2 4357 o, (W, —wTms)?
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Fisher's Linear Liscrnminant

Fisher’'s Linear Discriminant
Two class case

(W' (mz = my))(w’ (mg —my))"
ket Xnee, (W7 (xn — mi))?

w’(my —mi)(ma —mp)Tw

W (ho1 e, (%0 = mi)(xa = mi) T )w

-
w'Sgw .

= — g and Sy, are symmetric due to outer-products
= S dS y tric due t ter-product
w!Spyw

J(w) =

Vo E(w) = wiSywV,(wSgw) —w’SgwV,,(w’Syw) .
w (WTSWW)2 (. quotient rule)
~ wSpw(2Syw) — w’Syw(2Sgw)

(wTSpyw)?

( Vy(v Mv) = (M + MT)V)
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Fisher's Linear Liscrnminant

Fisher’'s Linear Discriminant
Two class case

» Objective J can be maximized by equating gradient to the 0 vector
T T
w' Sgw(Sww) =w'Spyw(Sgw)

» Since we only care about the direction of projection, we can drop the
scalar factors to get

SWw = SBW
SWw — (m2 — m1) (m2 — ml)Tw
| —
scalar
Sww o (m2 —my)

w ox Sy (ma — my)
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Ferceptron

Perceptron Algorithm
Two-class Classification

> Target t, is taken to be either +1 or —1.
> A perceptron classifies its input via the non-linear step function

1 ifwTe, >0
y(¢)_{—1 ifwl, <0

» Extremely simplified model of biological neuron.
» Perceptron criterion: w' ¢nt, > 0 for correctly classified point.
» Error can be defined on the set M(w) of misclassified points.

E(w) = Z —w/! ¢nty
neM(w)

» Optimal w can be learned via gradient descent.

v

For linearly separable data, perceptron learning is guaranteed to find the
decision boundary in finite iterations.
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Ferceptron

Gradient Descent

» Gradient is the direction (in input space) of maximum rate of increase of
a function.
» To minimize, move in negative gradient direction.

whew — Wold - anE(W)
> Also known as gradient descent.
» Local versus global minima.
» Learning rate 1 should be decayed to avoid osscillation and to converge to
a local minimum.
> Different types of gradient descent:
> Batch (w"" = w°d — nV,E)
> Sequential (w"W = w4 — vV E,)
> Stochastic (same as sequential but n is chosen randomly).
> Mini-batches (w"" = w4 — V., Eg)
» Most common variations are stochastic gradient descent (SGD) and SGD
using mini-batches.
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