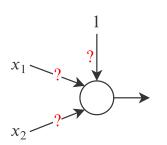
CS-453 Machine Learning

Nazar Khan

Department of Computer Science University of the Punjab

Training a Perceptron

What is training?

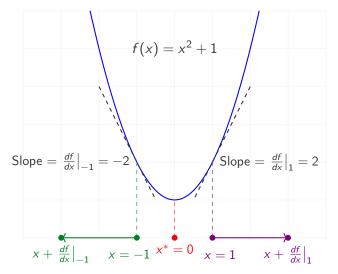


AND					OR					
	x_1	<i>X</i> ₂	t				<i>x</i> ₁		<i>x</i> ₂	t
	0	0	0				0		0	0
	0	1	0				0		1	1
	1	0	0				1		0	1
	1	1	1				1		1	1

Find weights w and bias b that maps input vectors x to given targets t.

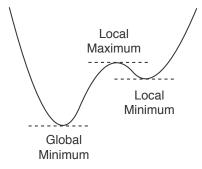
- ▶ A perceptron is a function $f : x \rightarrow t$ with parameters w, b.
- Formally written as f(x; w, b).
- ▶ Training corresponds to *minimizing a loss function*.
- ▶ So let's take a detour to understand function minimization.

Minimization



What is the slope/derivative/gradient at the minimizer $x^* = 0$?

Minimization Local vs. Global Minima



- Stationary point: where derivative is 0.
- A stationary point can be a minimum or a maximum.
- A minimum can be local or global. Same for maximum.

Gradient Descent

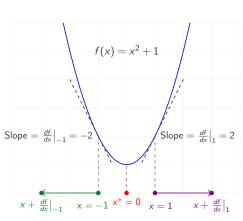
Gradient is the direction, in input space, of maximum rate of increase of a function.

$$f\left(x + \frac{df}{dx}\right) \ge f(x + v) \ \forall v \ne \frac{df}{dx}$$

To minimize function f(x) with respect to x, move in negative gradient direction.

$$x^{\text{new}} = x^{\text{old}} - \left. \frac{df}{dx} \right|_{x^{\text{old}}}$$

► Try it! Start from $x^{\text{old}} = -1$. Do you notice any problem?



Minimization via Gradient Descent

 \triangleright To minimize loss L(w) with respect to weights w

$$\mathsf{w}^{\mathsf{new}} = \mathsf{w}^{\mathsf{old}} - \eta \nabla_{\mathsf{w}} L(\mathsf{w})$$

where scalar $\eta > 0$ controls the step-size. It is called the *learning rate*.

► Also known as *gradient descent*.

Repeated applications of gradient descent find the closest local minimum.

Gradient Descent

- 1. Initialize w^{old} randomly.
- 2. do
 - **2.1** $w^{\text{new}} \leftarrow w^{\text{old}} \eta \nabla_w L(w)|_{w\text{old}}$
- 3. while $|L(w^{\text{new}}) L(w^{\text{old}})| > \epsilon$
- \blacktriangleright Learning rate η needs to be reduced gradually to ensure convergence to a local minimum.
- If η is too large, the algorithm can overshoot the local minimum and keep. doing that indefinitely (oscillation).
- If η is too small, the algorithm will take too long to reach a local minimum.

Gradient Descent

Different types of gradient descent:

 $\begin{array}{ll} \text{Batch} & \text{w}^{\text{new}} = \text{w}^{\text{old}} - \eta \nabla_{\text{w}} L \\ \text{Sequential} & \text{w}^{\text{new}} = \text{w}^{\text{old}} - \eta \nabla_{\text{w}} L_n \\ \text{Stochastic} & \text{same as sequential but } n \text{ is chosen randomly} \end{array}$

 $\mbox{Mini-batches} \quad \mbox{w}^{\mbox{\scriptsize new}} = \mbox{w}^{\mbox{\scriptsize old}} - \eta \nabla_{\mbox{\scriptsize w}} \mbox{\it L}_{\mathcal{B}}$

Most common variations are stochastic gradient descent (SGD) and SGD using mini-batches.

Perceptron Algorithm Two-class Classification

- Let (x_n, t_n) be the *n*-th training example pair.
- \triangleright Mathematical convenience: replace Boolean target (0/1) by binary target (-1/1).

AND					OR				
	x_1	<i>X</i> ₂	t		x_1	<i>X</i> 2	t		
	0	0	-1		0	0	-1		
	0	1	-1		0	1	1		
	1	0	-1		1	0	1		
	1	1	1		1	1	1		

Do the same for perceptron output.

$$y(\mathbf{x}_n) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x}_n + b \ge 0\\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_n + b < 0 \end{cases}$$

Perceptron Algorithm

Two-class Classification

- Notational convenience: append b at the end of w and append 1 at the end of x_n to write pre-activation simply as $w^T x_n$.
- ► A perceptron classifies its input via the non-linear step function

$$y(\mathbf{x}_n) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x}_n \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_n < 0 \end{cases}$$

▶ Perceptron criterion: $w^T x_n t_n > 0$ for correctly classified point.

Perceptron Algorithm

Two-class Classification

▶ Loss can be defined on the set $\mathcal{M}(w)$ of misclassified points.

$$L(\mathbf{w}) = \sum_{n \in \mathcal{M}(\mathbf{w})} - \mathbf{w}^T \mathbf{x}_n t_n$$

▶ Optimal w minimizes the value of the loss function L(w).

$$w^* = \arg\min_{w} L(w)$$

Gradient is computed as

$$\nabla_{\mathsf{w}} L(\mathsf{w}) = \sum_{n \in \mathcal{M}(\mathsf{w})} -\mathsf{x}_n t_n$$

Perceptron Algorithm

Two-class Classification

- Optimal w* can be learned via gradient descent.
- Corresponds to the following rule at the *n*-th training sample if it is misclassified.

$$w^{\text{new}} = w^{\text{old}} + x_n t_n$$

- Known as the perceptron learning rule.
- For linearly separable data, perceptron learning is guaranteed to find the decision boundary in finite iterations.
 - Try it for the AND or OR problems.
- ► For data that is *not linearly separable*, this algorithm will never converge.
 - ► Try it for the XOR problem.