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Loss Functions Minimization Matrix Calculus

Pre-requisites

▶ Before looking at how a multilayer perceptron can be trained, one must
study

1. Gradient computation
2. Gradient descent
3. Loss functions for machine learning
4. Smooth activation functions
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Loss Functions for Machine Learning

Notation:
▶ Let x ∈ R denote a univariate input.
▶ Let x ∈ RD denote a multivariate input.
▶ Same for targets t ∈ R and t ∈ RK .
▶ Same for outputs y ∈ R and y ∈ RK .
▶ Let θ denote the set of all learnable parameters of a machine

learning model.
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Loss Functions for Machine Learning
Regression

▶ Univariate

L(θ) =
1
2

N∑
n=1

(yn − tn)
2

▶ Multivariate

L(θ) =
1
2

N∑
n=1

∥yn − tn∥2

▶ Known as half-sum-squared-error (SSE) or ℓ2-loss.
▶ Verify that both losses are 0 when outputs match targets for all n.

Otherwise, both losses are greater than 0.
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Background
Probability and Negative of Natural Logarithm

▶ Logarithm is a monotonically increasing function.
▶ Probability lies between 0 and 1.
▶ Between 0 and 1, logarithm is negative.
▶ So − ln(p(x)) approaches ∞ for p(x) = 0 and 0 for p(x) = 1.
▶ Can be used as a loss function.
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Loss Functions for Machine Learning
Binary Classification

▶ For two-class classification, targets can be binary.
▶ tn = 0 if xn belongs to class C0.
▶ tn = 1 if xn belongs to class C1.

▶ If output yn can be restricted to lie between 0 and 1, we can treat it as
probability of xn belonging to class C1. That is, yn = P(C1|xn).

▶ Then 1 − yn = P(C0|xn).
▶ Ideally,

▶ yn should be 1 if xn ∈ C1, and
▶ 1 − yn should be 1 if xn ∈ C0.

▶ Equivalently,
▶ − ln yn should be 0 if xn ∈ C1, and
▶ − ln(1 − yn) should be 0 if xn ∈ C0.

▶ So depending upon tn, either − ln yn or − ln(1 − yn) should be considered
as loss.
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Loss Functions for Machine Learning
Binary Classification

▶ Using tn to pick the relevant loss, we can write total loss as

L(θ) = −
N∑

n=1

tn ln yn + (1 − tn) ln(1 − yn)

▶ Known as binary cross-entropy (BCE) loss.
▶ Verify that BCE loss is 0 when outputs match targets for all n. Otherwise,

loss is greater than 0.
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Loss Functions for Machine Learning
Multiclass Classification

▶ For multiclass classification, targets can be represented
using 1-of-K coding. Also known as 1-hot vectors.
▶ 1-hot vector: only one component is 1. All the rest

are 0.
▶ If tn3 = 1, then xn belongs to class 3.

▶ If outputs of K neurons can be restricted to
1. 0 ≤ ynk ≤ 1, and
2.

∑K
k=1 ynk = 1,

then we can treat outputs as probabilities.
▶ Later, we shall see activation functions that produce

per-class probability values.

tn =


0
0
1
0
0



yn =


P(C1|xn)
P(C2|xn)
P(C3|xn)
P(C4|xn)
P(C5|xn)
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Loss Functions for Machine Learning
Multiclass Classification

▶ Similar to BCE loss, we can use tnk to pick the relevant negative log loss
and write overall loss as

L(θ) = −
N∑

n=1

K∑
k=1

tnk ln ynk

▶ Known as multiclass cross-entropy (MCE) loss.
▶ Verify that MCE loss is 0 when outputs match targets for all n.

Otherwise, loss is greater than 0.
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Convexity

▶ A function f (x) is convex if every chord lies on or
above the function.

▶ Can be minimized by finding stationary point.
There will only be one.

▶ Loss functions for neural networks are not convex.
▶ They have multiple local minima and maxima.
▶ Can be minimized via gradient descent.

Global
Minimum

Local
Minimum

Local
Maximum
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Second Derivative

▶ First derivative equal to zero determines stationary points.
▶ Second derivative distinguishes between maxima and minima.

▶ At maximum, second derivative is negative.
▶ At minimum, second derivative is positive.

▶ But all of the above applies to functions in 1-dimension.
▶ In higher dimensions, stationary point is still defined by ∇f = 0.
▶ But there will be a second derivative in each dimension – some might be

positive and some negative.
▶ So how can we distinguish between maxima and minima in higher

dimensions?
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Higher Dimensions

▶ In D-dimensions, maxima and minima are distinguished via a special
D × D matrix of second derivatives known as the Hessian matrix.

H =


∂2f

∂x1∂x1
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xD
∂2f

∂x2∂x1
∂2f

∂x2∂x2
. . . ∂2f

∂x2∂xD
...

...
. . .

...
∂2f

∂xD∂x1
∂2f

∂xD∂x2
. . . ∂2f

∂xD∂xD


▶ If xTHx ≥ 0 for all x ̸= 0, then H is positive semi-definite.
▶ This is equivalent to H having non-negative eigenvalues.

If Hessian matrix at a stationary point x is positive semi-definite,
then x is a (local) minimizer of f .
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Matrix and Vector Derivatives

For scalar function f ∈ R,

∇vf =
∂f

∂v
=

[
∂f
∂v1

∂f
∂v2

. . . ∂f
∂vD

]

∇Mf =
∂f

∂M
=


∂f

∂M11
∂f

∂M12
. . . ∂f

∂M1n
∂f

∂M21
∂f

∂M22
. . . ∂f

∂M2n
...

...
. . .

...
∂f

∂Mm1
∂f

∂Mm2
. . . ∂f

∂Mmn


For vector function f ∈ RK ,

∇vf =


∇vf1
∇vf2

...
∇vfK

 =


∂f1
∂v1

∂f1
∂v2

. . . ∂f1
∂vD

∂f2
∂v1

∂f2
∂v2

. . . ∂f2
∂vD

...
...

. . .
...

∂fK
∂v1

∂fK
∂v2

. . . ∂fK
∂vD
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