Activation Functions

- Recall that a perceptron has a non-differentiable activation function, i.e., step function.
 - Zero-derivative everywhere except at 0 where it is non-differentiable.
- Prevents gradient descent.
- Can we use a smooth activation function that behaves similar to a step function?
- Perceptron with a smooth activation function is called a *neuron*.
- Neural networks are also called multilayer perceptrons (MLP) even though they do not contain any perceptron.

Logistic Sigmoid Function

- ▶ For $a \in \mathbb{R}$, the *logistic sigmoid* function is given by $\sigma(a) = \frac{1}{1+e^{-a}}$
- Sigmoid means S-shaped.
- Maps −∞ ≤ a ≤ ∞ to the range 0 ≤ σ ≤ 1. Also called squashing function.
- Can be treated as a probability value.
- Symmetry $\sigma(-a) = 1 \sigma(a)$. Prove it.
- Easy derivative $\sigma' = \sigma(1 \sigma)$. Prove it.

Activation Functions

Regression

- Univariate: use 1 output neuron with identity activation function y(a) = a.
- Multivariate: use K output neurons with identity activation functions $y(a_k) = a_k$.
- Classification
 - ▶ Binary: use 1 output neuron with logistic sigmoid $y(a) = \sigma(a)$.
 - ▶ Multiclass: use *K* output neurons with *softmax* activation function.

Softmax Activation Function

For real numbers a_1, \ldots, a_K , the *softmax* function is given by

$$y(a_k; a_1, a_2, \dots, a_K) = \frac{e^{a_k}}{\sum_{i=1}^K e^{a_i}}$$

Output of k-th neuron depends on activations of all neurons in the same layer.

Softmax Activation Function

- ▶ Softmax is ≈ 1 when $a_k >> a_j \forall j \neq k$ and ≈ 0 otherwise.
- Provides a smooth (differentiable) approximation to finding the *index of* the maximum element.
 - ► Compute softmax for 1, 10, 100.
 - Does not work everytime.
 - Compute softmax for 1, 2, 3. Solution: multiply by 100.
 - Compute softmax for 1, 10, 1000. Solution: subtract maximum before computing softmax.
- Also called the normalized exponential function.
- ▶ Since $0 \le y_k \le 1$ and $\sum_{k=1}^{K} y_k = 1$, softmax outputs can be treated as probability values.
- Show that $\frac{\partial y_k}{\partial a_i} = y_k(\delta_{jk} y_j)$ where $\delta_{jk} = 1$ if j = k and 0 otherwise.