Activation Functions

- Recall that a perceptron has a non-differentiable activation function, i.e., step function.
- Zero-derivative everywhere except at 0 where it is non-differentiable.
- Prevents gradient descent.
- Can we use a smooth activation function that behaves similar to a step function?
- Perceptron with a smooth activation function is called a neuron.
- Neural networks are also called multilayer perceptrons (MLP) even though they do not contain any perceptron.

Logistic Sigmoid Function

- For $a \in \mathbb{R}$, the logistic sigmoid function is given by $\sigma(a)=\frac{1}{1+e^{-a}}$
- Sigmoid means S-shaped.
- Maps $-\infty \leq a \leq \infty$ to the range $0 \leq \sigma \leq 1$. Also called squashing function.
- Can be treated as a probability value.
- Symmetry $\sigma(-a)=1-\sigma(a)$. Prove it.
- Easy derivative $\sigma^{\prime}=\sigma(1-\sigma)$. Prove it.

Activation Functions

Regression

- Univariate: use 1 output neuron with identity activation function $y(a)=a$.
- Multivariate: use K output neurons with identity activation functions $y\left(a_{k}\right)=a_{k}$.

Classification

- Binary: use 1 output neuron with logistic sigmoid $y(a)=\sigma(a)$.
- Multiclass: use K output neurons with softmax activation function.

Softmax Activation Function

Softmax

- For real numbers a_{1}, \ldots, a_{K}, the softmax function is given by

$$
y\left(a_{k} ; a_{1}, a_{2}, \ldots, a_{K}\right)=\frac{e^{a_{k}}}{\sum_{i=1}^{K} e^{a_{i}}}
$$

- Output of k-th neuron depends on activations of all neurons in the same layer.

Softmax Activation Function

- Softmax is ≈ 1 when $a_{k} \gg a_{j} \forall j \neq k$ and ≈ 0 otherwise.
- Provides a smooth (differentiable) approximation to finding the index of the maximum element.
- Compute softmax for 1, 10, 100.
- Does not work everytime.
- Compute softmax for $1,2,3$. Solution: multiply by 100 .
- Compute softmax for $1,10,1000$. Solution: subtract maximum before computing softmax.
- Also called the normalized exponential function.
- Since $0 \leq y_{k} \leq 1$ and $\sum_{k=1}^{K} y_{k}=1$, softmax outputs can be treated as probability values.
- Show that $\frac{\partial y_{k}}{\partial a_{j}}=y_{k}\left(\delta_{j k}-y_{j}\right)$ where $\delta_{j k}=1$ if $j=k$ and 0 otherwise.

