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Optimisation Vanishing Gradient Activation Functions

Backpropagation
Learning Algorithm

1. Forward propagate the input vector xn to compute and store activations
and outputs of every neuron in every layer.

2. Evaluate δk = ∂Ln
∂ak

for every neuron in output layer.

3. Evaluate δj =
∂Ln
∂aj

for every neuron in every hidden layer via
backpropagation.

δj = h′(aj)
K∑

k=1

δkwkj

4. Compute derivative of each weight ∂Ln
∂w via δ×input.

5. Update each weight via gradient descent w τ+1 = w τ − η ∂Ln
∂w .
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Tanh
A (−1, 1) sigmoidal function

▶ Since range of logistic sigmoid σ(a) is (0, 1), we can obtain a function
with (−1, 1) range as 2σ(a)− 1.

▶ Another related function with (−1, 1) range is the tanh function.

tanh(a) = 2σ(2a)− 1 =
ea − e−a

ea + e−a

where σ is applied on 2a.
▶ Preferred1over logistic sigmoid as activation function h(a) of hidden

neurons.
▶ Just like the logistic sigmoid, derivative of tanh(a) is simple:

1 − tanh2(a). (Prove it.)

1LeCun et al., ‘Efficient backprop’.
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A Simple Example

▶ Two-layer MLP for multivariate regression from RD −→ RK .
▶ Linear outputs yk = ak with half-SSE L = 1

2
∑K

k=1(yk − tk)
2.

▶ M hidden neurons with tanh(·) activation functions.

Forward propagation

aj =
D∑
i=0

w
(1)
ji xi

zj = tanh(aj)

z0 = 1

yk =
M∑
j=0

w
(2)
kj zj

δk = yk − tk

Backpropagation

δj = (1 − z2
j )

K∑
k=1

w
(2)
kj δk

▶ Compute derivatives ∂L

∂w
(1)
ji

= δjxi and ∂L

∂w
(2)
kj

= δkzj .
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Backpropagation
Verifying Correctness

▶ Any implementation of analytical derivatives (not just backpropagation)
must be compared with numerical derivatives.

▶ Numerical derivatives can be computed via finite central differences

∂Ln
∂wji

=
Ln(wji + ϵ)− Ln(wji − ϵ)

2ϵ
+ O(ϵ2)

▶ Analytical derivatives computed via backpropagation must be compared
with numerical derivatives for a few examples to verify correctness.
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Backpropagation
Efficiency

▶ Notice that we could have avoided backpropagation and computed all
required derivatives numerically.

▶ But cost of numerical differentiation is O(|W |2).
▶ Two fprops per weight and each fprop has O(|W |) cost. Why?

▶ While cost of backpropagation is O(|W |).
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Neural Networks and Stationary Points

▶ For optimisation, we notice that W ∗ must be a stationary point of L(W ).
▶ Minimum, maximum, or saddle point.
▶ A saddle point is where gradient vanishes but point is not an extremum.
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Neural Network training finds local minimum

▶ The goal in neural network minimisation is to find a local minimum.
▶ A global minimum, even if found, cannot be verified as globally minimum.
▶ Due to symmetry, there are multiple equivalent local minima.
▶ Reaching any suitable local minimum is the goal of neural network

optimisation.
▶ Since there are no analytical solutions for W ∗, we use iterative, numerical

procedures.
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Optimisation Options

▶ Options for iterative optimisation
▶ Online methods (using partial training data)

▶ Stochastic gradient descent
▶ Stochastic gradient descent using mini-batches

▶ Batch methods (using all training data)
▶ Batch gradient descent
▶ Conjugate gradient descent
▶ Quasi-Newton methods
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Online Methods

▶ Online methods converge faster since parameter updates are more
frequent.

▶ Have greater chance of escaping local minima because stationary point
w.r.t to whole data set will generally not be a stationary point w.r.t an
individual data point.
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Batch Methods

▶ Batch methods are practical for small datasets only.
▶ Deep Learning datasets are increasingly becoming larger and larger.
▶ Conjugate gradient descent and quasi-Newton methods

▶ are more robust and faster than batch gradient descent, and
▶ decrease loss at each iteration until arriving at a minimum.
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Problems with sigmoidal neurons

a

σ(a) = 1
1+e−a

σ′(a) = e−a

(1+e−a)2

a
4 + 1

2

▶ For large |a|, sigmoid value approaches either 0 or 1. This is called
saturation.

▶ When the sigmoid saturates, the gradient approaches zero.
▶ Neurons with sigmoidal activations stop learning when they saturate.
▶ When they are not saturated, they are almost linear.
▶ There is another reason for the gradient to approach zero during

backpropagation.
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Vanishing Gradient

▶ Notice that gradient of the sigmoid is always between 0 and 1
4 .

▶ Now consider the backpropagation equation.

δj = h′(aj)︸ ︷︷ ︸
≤ 1

4

K∑
k=1

wkjδk

where δk will also contain at least one factor of ≤ 1
4 .

▶ This means that values of δj keep getting smaller as we backpropagate
towards the early layers.

▶ Since gradient = δ×input, the gradients also keep getting smaller for the
earlier layers. Known as the vanishing gradient problem.

▶ Therefore, while the network might be deep, learning will not be deep.
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Logistic Sigmoid

a

Activation function y(a) = 1
1+e−a

Derivative y ′(a) = y(a)(1 − y(a))
Maximum magnitude of derivative 1

4
Problem Cause vanishing gradients
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Hyperbolic Tangent

a

Activation function y(a) = tanh(a)
Derivative y ′(a) = 1 − y2(a)
Maximum magnitude of derivative 1
Problem Cause vanishing gradients
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Rectified Linear Unit (ReLU)

a

Activation function y(a) =

{
a if a > 0
0 if a ≤ 0

Derivative y ′(a) =

{
1 if a > 0
0 if a ≤ 0

Advantage Avoids vanishing gradients
Problem Dead neurons2

2This can be an advantage as well since death implies fewer neurons.
Nazar Khan Machine Learning



Optimisation Vanishing Gradient Activation Functions

Leaky ReLU

a

Activation function y(a) =

{
a if a > 0
ka if a ≤ 0

where 0 ≤ k ≤ 1

Derivative y ′(a) =

{
1 if a > 0
k if a ≤ 0

Advantage Neuron is always learning
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Exponential Linear Unit (ELU)

a

Activation function y(a) =

{
a if a > 0
k(ea − 1) if a ≤ 0

where k > 0

Derivative y ′(a) =

{
1 if a > 0
y(a) + k if a ≤ 0

Maximum magnitude of derivative 1
Advantage Neuron is mostly learning
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Activation Functions
Summary

Name y(a) Plot y ′(a) Comments

Logistic sigmoid 1
1+e−a a y(a)(1 − y(a)) Vanishing gradients

Hyperbolic tangent tanh(a)
a

1 − y2(a) Vanishing gradients

Rectified Linear Unit
(ReLU)

{
a if a > 0
0 if a ≤ 0

a

{
1
0

Dead neurons.
Sparsity.

Leaky ReLU

{
a if a > 0
ka if a ≤ 0

a

{
1
k

0 < k < 1

Exponential Linear Unit
(ELU)

{
a if a > 0
k(ea − 1) if a ≤ 0

a

{
1
y(a) + k

k > 0.

▶ Saturated sigmoidal neurons stop learning. Piecewise-linear units keep
learning by avoiding saturation.

▶ ELU has been shown to lead to better accuracy and faster training.
▶ Take home message: For hidden neurons, use a member of the LU family.

They avoid i) saturation and ii) the vanishing gradient problem.
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