
CC-112 Programming Fundamentals

Structured Program Development in C - I

Nazar Khan

Department of Computer Science

University of the Punjab

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Algorithm

I A procedure for solving a computational problem in terms of

1. the actions to be executed, and

2. the order in which these actions are to be executed.

I Specifying the order in which statements are to be executed in a
computer program is called program control.

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Pseudocode

I Informal language that helps you develop algorithms.

I Helps the programmer to �think out� a program before attempting to
write it in a programming language.

Pseudocode of an algorithm to �nd the minimum of a list of numbers

Initialise min as 1st element of the list

Go through every element of the list starting from the 2nd

If the current element is smaller than min

Overwrite min by the current element

Display value of min

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Control Structures

All programs can be written in terms of 3 control structures.

Sequence Selection Repetition

1. if

2. if/else

3. switch

1. while

2. do/while

3. for

Control sturctures can be stacked or nested.

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

C program to �nd minimum of a list of numbers

1 // File name: find_min.c
2 // Program to find minimum number in a list of numbers.
3 // To compile and link: gcc find_min.c -o find_min
4 // To run: ./ find_min
5 #include <stdio.h>
6
7 // function main begins program execution
8 int main(void)
9 {

10 int number_list [] = {5, -6, 7, -17, 0, 23, 1000, -10, 12, 48}; // list of 10 integers
11 int min; // variable to store the minimum number
12 int i; // variable to go through the list of numbers
13
14 min = number_list [0]; // store 1st number in min
15 i = 1; // start from the 2nd number
16 while (i<10) // go through every number
17 {
18 if (number_list[i] < min) // if current number is smaller than min
19 {
20 min = number_list[i]; // overwrite min by the current number
21 }
22 i = i + 1; // set i to the position of the next number
23 }
24 printf("The smallest number is %d\n", min); // display the minimum
25 } // end function main

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Selection Structures

I The if single-selection statement selects or ignores a single action.

Flowchart for if single-selection for displaying �Passed� if marks exceed or equal 60.

I The if. . . else double-selection statement selects between two di�erent
actions.

Flowchart for if. . . else binary-selection for displaying �Passed� or �Failed�.

I The switch multiple-selection statement selects among many di�erent
actions based on the value of an expression.

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

An alternative to if. . . else

I C provides the conditional operator ?: which is closely related to the
if. . . else statement.

I ?: is a ternary operator.

I Can either be used to return some expression

printf(marks >= 60 ? "Passed" : "Failed");

or to execute some statement.

marks >= 60 ? printf("Passed") : printf("Failed");

Both are equivalent.

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Nested if. . . else

Code with nesting

1 if (marks >= 90) {
2 p r i n t f ("A") ;
3 } // end if
4 else {
5 if (marks >= 80) {
6 p r i n t f ("B") ;
7 } // end if
8 else {
9 if (marks >= 70) {

10 p r i n t f ("C") ;
11 } // end if
12 else {
13 if (marks >= 60) {
14 p r i n t f ("D") ;
15 } // end if
16 else {
17 p r i n t f ("F") ;
18 } // end else
19 } // end else
20 } // end else
21 } // end else

Code without nesting

1if (marks >= 90)
2{
3p r i n t f ("A") ;
4} // end if
5else if (marks >= 80) {
6p r i n t f ("B") ;
7} // end else if
8else if (marks >= 70) {
9p r i n t f ("C") ;
10} // end else if
11else if (marks >= 60) {
12p r i n t f ("D") ;
13} // end else if
14else {
15p r i n t f ("F") ;
16} // end else

Avoid too much nesting if possible. More than 3 levels of nesting makes
code less readable.

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Repetition Structures

I The while iteration statement speci�es that an action is to be repeated
while a condition is true.

I Eventually, when the condition becomes false, the iteration terminates,
and the �rst statement after the iteration statement executes.

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

While loop
Counter-controlled iterations

Ask for 10 students' marks and compute their average.

1 Set total to zero

2 Set marks counter to one

3

4 While marks counter is less than or equal to 10

5 Input the next marks

6 Add the marks into the total

7 Add one to the marks counter

8

9 Set the class average to the total divided by ten

10 Print the class average

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Ask for 10 students' marks and compute their average
Program

1 // Filename: class_average_fixed.c
2 // Class average program with counter -controlled iteration.
3 // To compile and link: gcc class_average_fixed.c -o class_average_fixed
4 // To run: ./ class_average_fixed
5 #include <stdio.h>
6
7 // function main begins program execution
8 int main(void)
9 {

10 unsigned int counter; // number of grade to be entered next
11 int grade; // grade value
12 int total; // sum of grades entered by user
13 int average; // average of grades
14
15 // initialization phase
16 total = 0; // initialize total
17 counter = 1; // initialize loop counter
18
19 // processing phase
20 while (counter <= 10) { // loop 10 times
21 printf("%s", "Enter grade: "); // prompt for input
22 scanf("%d", &grade); // read grade from user
23 total = total + grade; // add grade to total
24 counter = counter + 1; // increment counter
25 } // end while
26
27 // termination phase
28 average = total / 10; // integer division
29 printf("Class average is %d\n", average); // display result
30 } // end function main

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

While loop
Sentinel-controlled iterations

Ask for students' marks and compute their average.
Number of students is not known.
Initial attempt

1 Initialize variables

2 Input, add, and count quiz marks

3 Calculate and print class average

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

While loop
Sentinel-controlled iterations

Ask for students' marks and compute their average.
Number of students is not known.
Re�nement

1 Initialize total to zero

2 Initialize counter to zero

3

4 Input 1st grade (possibly sentinel)

5 While user has not yet entered sentinel

6 Add this grade into running total

7 Add one to grade counter

8 Input next grade (possibly sentinel)

9

10 If the counter is not equal to zero

11 Set average to total divided by counter

12 Print the average

13 else

14 Print �No grades were entered�

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

While loop
Counter-controlled iterations

Ask for students' marks and compute their average.
Number of students is not known.

1 // Filename: class_average_dynamic.c
2 // Class average program with sentinal -controlled iteration.
3 // To compile and link: gcc class_average_dynamic.c -o class_average_dynamic
4 // To run: ./ class_average_dynamic
5 #include <stdio.h>
6
7 // function main begins program execution
8 int main(void)
9 {

10 unsigned int counter; // number of grades entered
11 int grade; // grade value
12 int total; // sum of grades
13 float average; // number with decimal point for average
14
15 // initialization phase
16 total = 0; // initialize total
17 counter = 0; // initialize loop counter
18
19 // processing phase
20 // get first grade from user
21 printf("%s", "Enter grade , -1 to end: "); // prompt for input
22 scanf("%d", &grade); // read grade from user
23

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

While loop
Counter-controlled iterations

24 // loop while sentinel value not yet read from user
25 while (grade != -1) {
26 total = total + grade; // add grade to total
27 counter = counter + 1; // increment counter
28
29 // get next grade from user
30 printf("%s", "Enter grade , -1 to end: "); // prompt for input
31 scanf("%d", &grade); // read next grade
32 } // end while
33
34 // termination phase
35 // if user entered at least one grade
36 if (counter != 0) {
37 // calculate average of all grades entered
38 average = (float) total / counter; // avoid truncation
39
40 // display average with two digits of precision
41 printf("Class average is %.2f\n", average);
42 } // end if
43 else { // if no grades were entered , output message
44 printf("No grades were entered\n");
45 } // end else
46 } // end function main

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Arithmetic Assignment Operators

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Increment/Decrement Operators

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Precedences

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Nested Control Structures

You've been asked to provide a summary of results for 10 students. Next to
each name a 1 is written if the student passed the exam or a 2 if the student
failed. Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the prompting message
�Enter result� each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students
who passed and the number who failed.

4. If more than eight students passed the exam, print the message �Bonus to
instructor!�

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Nested Control Structures

Initial pseudocode

1. Initialize variables

2. Input the ten quiz grades and count passes and failures

3. Print a summary of the exam results and decide whether instructor should
receive a bonus

The most di�cult part of solving a problem on a computer is developing
the algorithm for the solution. Once a correct algorithm has been speci-
�ed, the process of producing a working C program is normally straight-
forward.

Many programmers write programs without ever using program-
development tools such as pseudocode. They feel that their ultimate
goal is to solve the problem on a computer and that writing pseudocode
merely delays the production of �nal outputs.

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Nested Control Structures

Re�nement
1. Initialize passes to zero

2. Initialize failures to zero

3. Initialize student to one

4.

5. While student counter is less than or equal to ten

6. Input the next exam result

7. If the student passed

8. Add one to passes

9. else

10. Add one to failures

11. Add one to student counter

12.

13. Print the number of passes

14. Print the number of failures

15. If more than eight students passed

16. Print �Bonus to instructor!�

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Nested Control Structures

1 // Filename: results_summary.c
2 // Analysis of examination results.
3 // To compile and link: gcc results_summary.c -o results_summary
4 // To run: ./ results_summary
5 #include <stdio.h>
6
7 // function main begins program execution
8 int main(void)
9 {

10 // initialize variables in definitions
11 unsigned int passes = 0; // number of passes
12 unsigned int failures = 0; // number of failures
13 unsigned int student = 1; // student counter
14 int result; // one exam result
15
16 // process 10 students using counter -controlled loop
17 while (student <= 10) {
18
19 // prompt user for input and obtain value from user
20 printf("%s", "Enter result (1=pass ,2= fail): ");
21 scanf("%d", &result);
22 // if result 1, increment passes
23 if (result == 1) {
24 passes = passes + 1;
25 } // end if
26 else { // otherwise , increment failures
27 failures = failures + 1;
28 } // end else

Algorithms Control Structures Assignment Increment/Decrement Nested Control Structures

Nested Control Structures

29 student = student + 1; // increment student counter
30 } // end while
31
32 // termination phase; display number of passes and failures
33 printf("Passed %u\n", passes);
34 printf("Failed %u\n", failures);
35 // if more than eight students passed , print "Bonus to instructor !"
36 if (passes > 8) {
37 printf("Bonus to instructor!");
38 } // end if
39 } // end function main

	Algorithms
	Control Structures
	Assignment
	Increment/Decrement
	Nested Control Structures

