
CC-112 Programming Fundamentals

C Functions

Nazar Khan

Department of Computer Science

University of the Punjab

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Modularizing Programs in C

I The best way to develop and maintain a large program is to divide it into
several smaller pieces, each more manageable than the original program.

I A function is invoked by a function call.

I The function call speci�es the function by name and provides information
(as arguments) that the called function needs to perform its task.

I The purpose of information hiding is to give functions access only to the
information they need to complete their tasks.

I This is a means of implementing the principle of least privilege, one of the
most important principles of good software engineering.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Functions

I A local variable is known only in a function de�nition.

I Other functions are not allowed to know the names of a function's local
variables, nor is any function allowed to know the im- plementation details
of any other function.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

The square Function

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

The maximum Function

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Function Prototypes: A Deeper Look

I A function prototype declares the function's name, return type and
declares the number, types, and order of the parameters the function
expects to receive.

I Function prototypes enable the compiler to verify that functions are called
correctly.

I The compiler ignores variable names mentioned in the function prototype.

I Arguments in a mixed-type expression are converted to the same type via
the C standard's usual arithmetic conversion rules.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Function Call Stack and Stack Frames

I Stacks are known as last-in, �rst-out (LIFO) data structures � the last
item pushed (inserted) on the stack is the �rst item popped (removed)
from the stack.

I A called function must know how to return to its caller.

I So return address of calling function is pushed onto the program

execution stack when the function is called.

I If a series of function calls occurs, successive return addresses are pushed
onto the stack in last-in, �rst-out order.

I So the last function to execute will be the �rst to return to its caller.

I The program execution stack contains the memory for the local variables
used in each invocation of a function during a program's execution.

I This data is known as the stack frame of the function call.

I When a function call is made, the stack frame for that function call is
pushed onto the program execution stack.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Function Call Stack and Stack Frames

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Function Call Stack and Stack Frames

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Function Call Stack and Stack Frames

I When the function returns to its caller, the stack frame for this function
call is popped o� the stack and those local variables are no longer known
to the program.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Function Call Stack and Stack Frames

I The amount of memory in a computer is �nite.

I So only a certain amount of memory can be used to store stack frames on
the program execution stack.

I If there are more function calls than can have their stack frames stored on
the program execution stack, an error known as a stack over�ow occurs.

I The application will compile correctly, but its execution will fail with a
stack over�ow.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Headers

I Each standard library has a corresponding header containing

1. function prototypes for all of that library's functions, and

2. de�nitions of various symbolic constants needed by those functions.

I You can create and include your own headers.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Some C Standard Library Files

I <assert.h> contains information for adding diagnostics that aid program
debugging.

I <ctype.h> contains function prototypes for functions that test characters
for certain properties, and function prototypes for functions that can be
used to convert lowercase letters to uppercase letters and vice versa.

I <errno.h> de�nes macros that are useful for reporting error conditions.

I <float.h> contains the �oating-point size limits of the system.

I <limits.h> contains the integral size limits of the system.

I <locale.h> contains function prototypes and other information that
enables a program to be modi�ed for the current locale on which it's
running. The notion of locale enables the computer system to handle
di�erent conventions for expressing data such as dates, times, currency
amounts and large numbers throughout the world.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Some C Standard Library Files

I <math.h> contains function prototypes for math library functions.

I <setjmp.h> contains function prototypes for functions that allow
bypassing of the usual function call and return sequence.

I <signal.h> contains function prototypes and macros to handle various
conditions that may arise during program execution.

I <stdarg.h> de�nes macros for dealing with a list of arguments to a
function whose number and types are unknown.

I <stddef.h> contains common type de�nitions used by C for performing
calculations.

I <stdio.h> contains function prototypes for the standard input/output
library functions, and information used by them.

I <stdlib.h> contains function prototypes for conversions of numbers to
text and text to numbers, memory allocation, random numbers and other
utility functions.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Some C Standard Library Files

I <string.h> contains function prototypes for string-processing functions.

I <time.h> contains function prototypes and types for manipulating the
time and date.

Modularizing Programs in C Functions Function De�nitions Function Call Stack Headers Passing by Reference

Passing Arguments By Value and By Reference

I When an argument is passed by value, a copy of its value is made and
passed to the called function.

I Changes to the copy in the called function do not a�ect the original
variable's value.

I When an argument is passed by reference, the caller allows the called
function to modify the original variable's value.

I All calls in C are call-by-value.

I It's possible to achieve call-by-reference by using address operators and
indirection operators.

scanf("%d"︸︷︷︸
by value

, &num︸︷︷︸
by reference

);

	Modularizing Programs in C
	Functions
	Function Definitions
	Function Call Stack
	Headers
	Passing by Reference

