CC-112 Programming Fundamentals
C Functions
Nazar Khan

Department of Computer Science
University of the Punjab



Modularizing Programs in C

Modularizing Programs in C

» The best way to develop and maintain a large program is to divide it into
several smaller pieces, each more manageable than the original program.

» A function is invoked by a function call.

» The function call specifies the function by name and provides information
(as arguments) that the called function needs to perform its task.

» The purpose of information hiding is to give functions access only to the
information they need to complete their tasks.

> This is a means of implementing the principle of least privilege, one of the
most important principles of good software engineering.




Functions

Functions

» A Jocal variable is known only in a function definition.

> Other functions are not allowed to know the names of a function’s local
variables, nor is any function allowed to know the im- plementation details
of any other function.




Function Definitions

The square Function




Function Definitions

The maximum Function




Function Definitions

Function Prototypes: A Deeper Look

v

A function prototype declares the function’s name, return type and
declares the number, types, and order of the parameters the function
expects to receive.

Function prototypes enable the compiler to verify that functions are called
correctly.

The compiler ignores variable names mentioned in the function prototype.

Arguments in a mixed-type expression are converted to the same type via
the C standard’s usual arithmetic conversion rules.




Function Call Stack

Function Call Stack and Stack Frames

» Stacks are known as last-in, first-out (LIFO) data structures — the last
item pushed (inserted) on the stack is the first item popped (removed)
from the stack.

> A called function must know how to return to its caller.

> So return address of calling function is pushed onto the program
execution stack when the function is called.

> |If a series of function calls occurs, successive return addresses are pushed
onto the stack in last-in, first-out order.

> So the last function to execute will be the first to return to its caller.

» The program execution stack contains the memory for the local variables
used in each invocation of a function during a program’s execution.

» This data is known as the stack frame of the function call.

» When a function call is made, the stack frame for that function call is
pushed onto the program execution stack.




Function Call Stack

Function Call Stack and Stack Frames

Step |: Operating system invokes main to execute application

Operating system

Return location RI

Function call stack after Step |
Top of stack

Stack frame
for function main

int main()

Key

Lines that represent the operating
systern executing instructions




Function Call Stack

Function Call Stack and Stack Frames

Step 2: main invokes function square to perform calculation

int main()

— int square(int x}

Return location R2

Function call stack after Step 2

Top of stack

Stack frame for
function square

Stack frame
for function main




Function Call Stack

Function Call Stack and Stack Frames

» When the function returns to its caller, the stack frame for this function
call is popped off the stack and those local variables are no longer known
to the program.

Step 3: square returns its result to main

int main()

int square(int x)

Return location R2

Function call stack after Step 3

Top of stack

Stack frame
for function main




Function Call Stack

Function Call Stack and Stack Frames

» The amount of memory in a computer is finite.

> So only a certain amount of memory can be used to store stack frames on
the program execution stack.

> |f there are more function calls than can have their stack frames stored on
the program execution stack, an error known as a stack overflow occurs.

» The application will compile correctly, but its execution will fail with a
stack overflow.




Headers

Headers

» Each standard library has a corresponding header containing

1. function prototypes for all of that library’s functions, and
2. definitions of various symbolic constants needed by those functions.

> You can create and include your own headers.




Headers

Some C Standard Library Files

» <assert.h> contains information for adding diagnostics that aid program
debugging.

» <ctype.h> contains function prototypes for functions that test characters
for certain properties, and function prototypes for functions that can be
used to convert lowercase letters to uppercase letters and vice versa.

» <errno.h> defines macros that are useful for reporting error conditions.
» <float.h> contains the floating-point size limits of the system.
» <limits.h> contains the integral size limits of the system.

» <locale.h> contains function prototypes and other information that
enables a program to be modified for the current locale on which it's
running. The notion of locale enables the computer system to handle
different conventions for expressing data such as dates, times, currency
amounts and large numbers throughout the world.




Headers

Some C Standard Library Files

» <math.h> contains function prototypes for math library functions.

» <setjmp.h> contains function prototypes for functions that allow
bypassing of the usual function call and return sequence.

» <signal.h> contains function prototypes and macros to handle various
conditions that may arise during program execution.

» <stdarg.h> defines macros for dealing with a list of arguments to a
function whose number and types are unknown.

» <stddef.h> contains common type definitions used by C for performing
calculations.

» <stdio.h> contains function prototypes for the standard input/output
library functions, and information used by them.

» <stdlib.h> contains function prototypes for conversions of numbers to
text and text to numbers, memory allocation, random numbers and other
utility functions.




Headers

Some C Standard Library Files

» <string.h> contains function prototypes for string-processing functions.

> <time.h> contains function prototypes and types for manipulating the
time and date.




Passing by Reference

Passing Arguments By Value and By Reference

» When an argument is passed by value, a copy of its value is made and
passed to the called function.

» Changes to the copy in the called function do not affect the original
variable’s value.

» When an argument is passed by reference, the caller allows the called
function to modify the original variable’s value.

> All calls in C are call-by-value.

> It's possible to achieve call-by-reference by using address operators and
indirection operators.

scanf ( "%d" , &num );
N—— A

by value by reference




	Modularizing Programs in C
	Functions
	Function Definitions
	Function Call Stack
	Headers
	Passing by Reference

