CC-112 Programming Fundamentals
Random Number Generation
Nazar Khan

Department of Computer Science
University of the Punjab



Random Number Generation

The rand() function

» Function rand generates an integer between 0 and RAND _MAX which is
defined by the C standard to be at least 32767.

» Values produced by rand can be scaled and shifted to produce values in a
specific range.
» The general equation for scaling and shifting a random number is
n =a+ rand() % b;

where a is the shifting value (i.e., the first number in the desired range of
consecutive integers) and b is the scaling factor (i.e,. the width of the
desired range of consecutive integers).




Random Number Generation

The srand() function

» To randomize a program, use the C standard library function srand.
» The srand function seeds the random number generator.

» An srand call is ordinarily inserted in a program only after it has been
thoroughly debugged.

» While debugging, it's better to omit srand.

» This ensures repeatability, which is essential to proving that corrections to
a random number generation program work properly.

» The function prototypes for rand and srand are contained in
<stdlib.h>.

» To randomize without the need for entering a seed each time, we use
srand (time (NULL)).




Random Number Generation

Example: A Game of Chance

Rules of “Craps”

A player rolls two dice. Each die has six faces. These faces contain 1,
2, 3,4, 5, and 6 spots. After the dice have come to rest, the sum of
the spots on the two upward faces is calculated. If the sum is 7 or 11
on the first throw, the player wins. If the sum is 2, 3, or 12 on the
first throw (called "craps”), the player loses (i.e., the "house” wins).
If the sum is 4, 5, 6, 8 9, or 10 on the first throw, then that sum
becomes the player’s "point.” To win, you must continue rolling the
dice until you "make your point.” The player loses by rolling a 7
before making the point.




Random Number Generation

Simulation of “Craps”

// Simulating the game of craps.

#include <stdio.h>

#include <stdlib.h>

#include <time.h> // contains prototype for function time

// enumeration constants represent game status
enum Status { CONTINUE, WON, LOST };
int rollDice(void); // function prototype

int main(void)

{
// randomize random number generator using current time
srand (time (NULL));

int myPoint; // player must make this point to win
enum Status gameStatus; // can contain CONTINUE, WON, or
int sum = rollDice(); // first roll of the dice

// determine game status based on sum of dice
switch(sum) {

// win on first roll
case 7: // 7 is a winner
case 11: // 11 is a winner
gameStatus = WON;
break;

LOST




Random Number Generation

Simulation of “Craps”

// lose on first roll

case 2: // 2 is a loser

case 3: // 3 is a loser

case 12: // 12 is a loser
gameStatus = LOST;
break;

// remember point

default:
gameStatus = CONTINUE; // player should keep rolling
myPoint = sum; // remember the point

printf ("Point is %d\n", myPoint);
break; // optional

3
// while game not complete
while (CONTINUE == gameStatus) { // player should keep rolling
sum = rollDice(); // roll dice again
// determine game status
if (sum == myPoint) { // win by making point
gameStatus = WON;
}
else {
if (7 == sum) { // lose by rolling 7

gameStatus = LOST;




Random Number Generation

Simulation of “Craps”

// display won or lost message
if (WON == gameStatus) { // did player win?
puts ("Player wins");

else { // player lost
puts ("Player loses");

}

// roll dice, calculate sum and display results
int rollDice(void)
{
int diel = 1 + (rand() % 6); // pick random diel value
int die2 = 1 + (rand() % 6); // pick random die2 value
// display results of this roll
printf ("Player rolled %d + %d = %d\n", diel, die2, diel + die2);
return diel + die2; // return sum of dice




	Random Number Generation

