
CC-112 Programming Fundamentals

Storage Classes and Scope Rules

Nazar Khan

Department of Computer Science

University of the Punjab



Storage Classes Scope Rules

Storage Classes

I Each identi�er in a program has the attributes

1. storage class
2. storage duration � when does an identi�er exists in memory?
3. scope � where can an identi�er be referenced in a program?
4. linkage � which other C �les can reference an identi�er?

I C provides four storage classes indicated by the storage class speci�ers:

1. auto,
2. register,
3. extern, and
4. static.

I An identi�er's storage duration is when that identi�er exists in memory.

I An identi�er's linkage determines for a multiple-source-�le program
whether an identi�er is known only in the current source �le or in any
source �le with proper declarations.



Storage Classes Scope Rules

Storage Classes

I Variables with automatic storage duration are created when the block in
which they're de�ned is entered, exist while the block is active and are
destroyed when the block is exited. A function's local variables normally
have automatic storage duration.

I Keywords extern and static are used to declare identi�ers for variables
and functions of static storage duration.

I Static storage duration variables are allocated and initialized once, before
the program begins execution.

I There are two types of identi�ers with static storage duration:

1. external identi�ers (such as global variables and function names), and
2. local variables declared with the storage-class speci�er static.



Storage Classes Scope Rules

Global vs Local Static

I Global variables are created by placing variable de�nitions outside any
function de�nition.

I Global variables retain their values throughout the execution of the
program.

I Local static variables retain their value between calls to the function in
which they're de�ned.

I All numeric variables of static storage duration are initialized to zero if
you do not explicitly initialize them.



Storage Classes Scope Rules

Scope Rules

I An identi�er's scope is where the identi�er can be referenced in a program.

I An identi�er can have

1. function scope,
2. �le scope,
3. block scope, or
4. function-prototype scope.



Storage Classes Scope Rules

Function scope

I Labels are the only identi�ers with function scope.

I Labels can be used anywhere in the function in which they appear but
cannot be referenced outside the function body.



Storage Classes Scope Rules

File scope

I An identi�er declared outside any function has �le scope.

I Such an identi�er is �known� in all functions from the point at which it's
declared until the end of the �le.



Storage Classes Scope Rules

Block scope

I Identi�ers de�ned inside a block have block scope.

I Block scope ends at the terminating right brace (}) of the block.

I Local variables de�ned at the beginning of a function have block scope.

I Function parameters are considered local variables by the function and
also have block scope.

I Any block may contain variable de�nitions. When blocks are nested, and
an identi�er in an outer block has the same name as an identi�er in an
inner block, the identi�er in the outer block is �hidden� until the inner
block terminates.



Storage Classes Scope Rules

Function-prototype scope

I The only identi�ers with function-prototype scope are those used in the
parameter list of a function prototype.

I Identi�ers used in a function prototype can be reused elsewhere in the
program without ambiguity.



Storage Classes Scope Rules

Example of scoping rules

1 // Scoping.
2 #include <stdio.h>
3

4 void useLocal(void); // function prototype
5 void useStaticLocal(void); // function prototype
6 void useGlobal(void); // function prototype
7 int x = 1; // global variable
8

9 int main(void)
10 {
11 int x = 5; // local variable to main
12 printf("local x in outer scope of main is %d\n", x);
13 { // start new scope
14 int x = 7; // local variable to new scope
15 printf("local x in inner scope of main is %d\n", x);
16 } // end new scope
17 printf("local x in outer scope of main is %d\n", x);
18 useLocal (); // useLocal has automatic local x
19 useStaticLocal (); // useStaticLocal has static local x
20 useGlobal (); // useGlobal uses global x
21 useLocal (); // useLocal reinitializes automatic local x
22 useStaticLocal (); // static local x retains its prior value
23 useGlobal (); // global x also retains its value
24 printf("\nlocal x in main is %d\n", x);
25 }
26

27 // useLocal reinitializes local variable x during each call
28 void useLocal(void)



Storage Classes Scope Rules

Example of scoping rules

29 {
30 int x = 25; // initialized each time useLocal is called
31 printf("\nlocal x in useLocal is %d after entering useLocal\n", x);
32 ++x;
33 printf("local x in useLocal is %d before exiting useLocal\n", x);
34 }
35

36 // useStaticLocal initializes static local variable x only the first time
37 // the function is called; value of x is saved between calls to this
38 // function
39 void useStaticLocal(void)
40 {
41 // initialized once
42 static int x = 50;
43 printf("\nlocal static x is %d on entering useStaticLocal\n", x);
44 ++x;
45 printf("local static x is %d on exiting useStaticLocal\n", x);
46 }
47 // function useGlobal modifies global variable x during each call
48 void useGlobal(void)
49 {
50 printf("\nglobal x is %d on entering useGlobal\n", x);
51 x *= 10;
52 printf("global x is %d on exiting useGlobal\n", x);
53 }



Storage Classes Scope Rules

Example of scoping rules

Produces the following output

local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5


	Storage Classes
	Scope Rules

