CC-112 Programming Fundamentals
Storage Classes and Scope Rules
Nazar Khan

Department of Computer Science
University of the Punjab



Storage Classes

Storage Classes

» Each identifier in a program has the attributes
1. storage class
2. storage duration — when does an identifier exists in memory?
3. scope — where can an identifier be referenced in a program?
4. linkage — which other C files can reference an identifier?
» C provides four storage classes indicated by the storage class specifiers:
1. auto,
2. register,
3. extern, and
4. static.
> An identifier's storage duration is when that identifier exists in memory.
» An identifier's linkage determines for a multiple-source-file program

whether an identifier is known only in the current source file or in any
source file with proper declarations.




Storage Classes

Storage Classes

» Variables with automatic storage duration are created when the block in
which they're defined is entered, exist while the block is active and are
destroyed when the block is exited. A function’s local variables normally
have automatic storage duration.

» Keywords extern and static are used to declare identifiers for variables
and functions of static storage duration.

> Static storage duration variables are allocated and initialized once, before
the program begins execution.

» There are two types of identifiers with static storage duration:

1. external identifiers (such as global variables and function names), and
2. local variables declared with the storage-class specifier static.




Storage Classes

Global vs Local Static

> Global variables are created by placing variable definitions outside any
function definition.

» Global variables retain their values throughout the execution of the
program.

» Local static variables retain their value between calls to the function in
which they're defined.

> All numeric variables of static storage duration are initialized to zero if
you do not explicitly initialize them.




Scope Rules

Scope Rules

> An identifier’s scope is where the identifier can be referenced in a program.
» An identifier can have

1. function scope,

2. file scope,

3. block scope, or

4. function-prototype scope.




Scope Rules

Function scope

» Labels are the only identifiers with function scope.

> Labels can be used anywhere in the function in which they appear but
cannot be referenced outside the function body.




Scope Rules

File scope

> An identifier declared outside any function has file scope.

> Such an identifier is “known” in all functions from the point at which it’s
declared until the end of the file.




Scope Rules

Block scope

» |dentifiers defined inside a block have block scope.
» Block scope ends at the terminating right brace (}) of the block.
> Local variables defined at the beginning of a function have block scope.

» Function parameters are considered local variables by the function and
also have block scope.

» Any block may contain variable definitions. When blocks are nested, and
an identifier in an outer block has the same name as an identifier in an
inner block, the identifier in the outer block is “hidden” until the inner
block terminates.




Scope Rules

Function-prototype scope

» The only identifiers with function-prototype scope are those used in the
parameter list of a function prototype.

> |dentifiers used in a function prototype can be reused elsewhere in the
program without ambiguity.




Example of scoping rules

// Scoping.
#include <stdio.h>

void uselocal(void); // function prototype

void useStaticLocal(void); // function prototype
void useGlobal(void); // function prototype

int x = 1; // global variable

int main(void)

{

¥

int x = 5; // local variable to main
printf ("local x in outer scope of main is %d\n", x);
{ // start new scope
int x = 7; // local variable to new scope
printf("local x in inner scope of main is %d\n", x);
} // end new scope
printf ("local x in outer scope of main is %d\n", x);
useLocal(); // uselocal has automatic local =x
useStaticLocal(); // useStaticLocal has static local x
useGlobal(); // useGlobal uses global x
uselocal(); // uselocal reinitializes automatic local x
useStaticLocal(); // static local x retains its prior value
useGlobal(); // global x also retains its value
printf ("\nlocal x in main is %d\n", x);

// uselocal reinitializes local variable x during each call
void useLocal(void)

Scope Rules




Example of scoping rules

}

int x = 25; // initialized each time uselLocal is called

printf ("\nlocal x in useLocal is %d after entering useLocal\n", x);
++X;

printf ("local x in useLocal is %d before exiting useLocal\n", x);

// useStaticLocal initializes static local variable x only the first time
// the function is called; value of x is saved between calls to this

// function

void useStaticLocal(void)

{

¥

// initialized once
static int x = 50;

printf ("\nlocal static x is %d on entering useStaticLocall\n", x);
+4x;
printf ("local static x is %d on exiting useStaticLocall\n", x);

// function useGlobal modifies global variable x during each call
void useGlobal(void)

{

printf ("\nglobal x is %d on entering useGlobal\n", x);
x *= 103
printf ("global x is %d on exiting useGloball\n", x);

Scope Rules




Scope Rules

Example of scoping rules

Produces the following output

local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5

local x in useLocal is 25 after entering useLocal
local x in uselLocal is 26 before exiting uselocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x in uselocal is 25 after entering uselocal
local x in useLocal is 26 before exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5




	Storage Classes
	Scope Rules

