CS-568 Deep Learning

Backpropagation and Vanishing Gradients

Nazar Khan

Department of Computer Science University of the Punjab

Backpropagation Learning Algorithm

- 1. Forward propagate the input vector \mathbf{x}_n to compute and store activations and outputs of every neuron in every layer.
- 2. Evaluate $\delta_k = \frac{\partial L_n}{\partial a_k}$ for every neuron in output layer.
- 3. Evaluate $\delta_j = \frac{\partial L_n}{\partial a_j}$ for every neuron in *every* hidden layer via backpropagation.

$$\delta_j = h'(a_j) \sum_{k=1}^K \delta_k w_{kj}$$

- **4.** Compute derivative of each weight $\frac{\partial L_n}{\partial w}$ via $\delta \times$ input.
- **5**. Update each weight via gradient descent $w^{\tau+1} = w^{\tau} \eta \frac{\partial L_n}{\partial w}$.

Tạnh

A(-1,1) sigmoidal function

- Since range of logistic sigmoid $\sigma(a)$ is (0,1), we can obtain a function with (-1,1) range as $2\sigma(a)-1$.
- ▶ Another related function with (-1,1) range is the tanh function.

$$tanh(a) = 2\sigma(2a) - 1 = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

where σ is applied on 2a.

- ▶ Preferred¹over logistic sigmoid as activation function h(a) of hidden neurons.
- Just like the logistic sigmoid, derivative of tanh(a) is simple: $1 tanh^2(a)$. (Prove it.)

¹LeCun et al., 'Efficient backprop'.

A Simple Example

- ightharpoonup Two-layer MLP for multivariate regression from $\mathbb{R}^D \longrightarrow \mathbb{R}^K$.
- ▶ Linear outputs $y_k = a_k$ with half-SSE $L = \frac{1}{2} \sum_{k=1}^K (y_k t_k)^2$.
- ightharpoonup M hidden neurons with $tanh(\cdot)$ activation functions.

Forward propagation

Backpropagation

 $\delta_j = (1 - z_j^2) \sum_{k=1}^{K} w_{kj}^{(2)} \delta_k$

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$
 $z_{j} = \tanh(a_{j})$
 $z_{0} = 1$
 $y_{k} = \sum_{j=0}^{M} w_{kj}^{(2)} z_{j}$

$$\delta_k = v_k - t_k$$

► Compute derivatives $\frac{\partial L}{\partial w_{ji}^{(1)}} = \delta_j x_i$ and $\frac{\partial L}{\partial w_{kj}^{(2)}} = \delta_k z_j$.

Deep Learning

Verifying Correctness

- ► Any implementation of analytical derivatives (not just backpropagation) must be compared with numerical derivatives.
- Numerical derivatives can be computed via finite central differences

$$\frac{\partial L_n}{\partial w_{ji}} = \frac{L_n(w_{ji} + \epsilon) - L_n(w_{ji} - \epsilon)}{2\epsilon} + O(\epsilon^2)$$

► Analytical derivatives computed via backpropagation must be compared with numerical derivatives for a few examples to verify correctness.

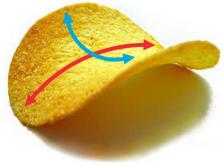
Backpropagation

Efficiency

- Notice that we could have avoided backpropagation and computed all required derivatives numerically.
- ▶ But cost of numerical differentiation is $O(|W|^2)$.
 - ▶ Two fprops per weight and each fprop has O(|W|) cost. Why?
- ▶ While cost of backpropagation is O(|W|).

Neural Networks and Stationary Points

- For optimisation, we notice that W^* must be a *stationary point* of L(W).
 - Minimum, maximum, or saddle point.
 - A saddle point is where gradient vanishes but point is not an extremum.



Neural Network training finds local minimum

► The goal in neural network minimisation is to find a local minimum.

Reaching any suitable local minimum is the goal of neural network

- A global minimum, even if found, cannot be verified as globally minimum.
- ▶ Due to symmetry, there are multiple equivalent local minima.
- optimisation.

 Since there are no analytical solutions for W^* we use iterative numerical
- Since there are no analytical solutions for W^* , we use iterative, numerical procedures.

Optimisation Options

- Options for iterative optimisation
 - Online methods (using partial training data)
 - Stochastic gradient descent
 - Stochastic gradient descent using mini-batches
 - Batch methods (using all training data)
 - Batch gradient descent
 - Conjugate gradient descent
 - Quasi-Newton methods

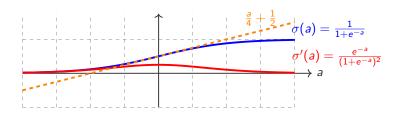
Online Methods

- Online methods converge faster since parameter updates are more frequent.
- Have greater chance of escaping local minima because stationary point w.r.t to whole data set will generally not be a stationary point w.r.t an individual data point.

Batch Methods

- Batch methods are practical for small datasets only.
- Deep Learning datasets are increasingly becoming larger and larger.
- Conjugate gradient descent and quasi-Newton methods
 - ▶ are more robust and faster than batch gradient descent, and
 - decrease loss at each iteration until arriving at a minimum.

Problems with sigmoidal neurons



- ► For large |a|, sigmoid value approaches either 0 or 1. This is called saturation.
- ▶ When the sigmoid saturates, the gradient approaches zero.
- ▶ Neurons with sigmoidal activations stop learning when they saturate.
- ▶ When they are not saturated, they are almost linear.
- ► There is another reason for the gradient to approach zero during backpropagation.

Vanishing Gradient

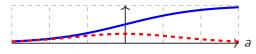
- Notice that gradient of the sigmoid is always between 0 and $\frac{1}{4}$.
- Now consider the backpropagation equation.

$$\delta_j = \underbrace{h'(a_j)}_{\leq \frac{1}{4}} \sum_{k=1}^K w_{kj} \delta_k$$

where δ_k will also contain at least one factor of $\leq \frac{1}{4}$.

- \blacktriangleright This means that values of δ_j keep getting smaller as we backpropagate towards the early layers.
- Since gradient = $\delta \times$ input, the gradients also keep getting smaller for the earlier layers. Known as the *vanishing gradient* problem.
- ► Therefore, while the network might be deep, learning will not be deep.

Logistic Sigmoid



Activation function Derivative Maximum magnitude of derivative

Problem

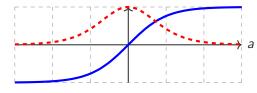
$$y(a) = \frac{1}{1+e^{-a}}$$

$$y'(a) = y(a)(1 - y(a))$$

$$\frac{1}{4}$$

Cause vanishing gradients

Hyperbolic Tangent



Activation function

Derivative

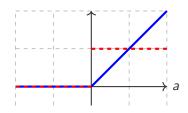
Maximum magnitude of derivative

Problem

 $y(a) = \tanh(a)$ $y'(a) = 1 - y^2(a)$

Cause vanishing gradients

Rectified Linear Unit (ReLU)



$$y(a) = \begin{cases} 0 & \text{if } a \leq 0 \end{cases}$$

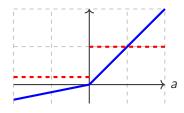
$$y(a) = \begin{cases} a & \text{if } a > 0 \\ 0 & \text{if } a \le 0 \end{cases}$$
$$y'(a) = \begin{cases} 1 & \text{if } a > 0 \\ 0 & \text{if } a \le 0 \end{cases}$$

Problem

Dead neurons²

²This can be an advantage as well since death implies fewer neurons.

Leaky ReLU



$$y(a) = \begin{cases} a & \text{if } a > 0 \\ ka & \text{if } a \le 0 \end{cases}$$

where $0 \le k \le 1$

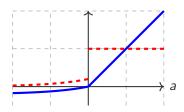
Derivative

$$y'(a) = \begin{cases} \overline{1} & \text{if } a > 0 \\ k & \text{if } a \le 0 \end{cases}$$

Advantage

Neuron is always learning

Exponential Linear Unit (ELU)



Activation function

Maximum magnitude of derivative Advantage

 $y(a) = \begin{cases} a & \text{if } a > 0 \\ k(e^a - 1) & \text{if } a \le 0 \end{cases}$ where k > 0

where
$$k > 0$$

$$y'(a) = \begin{cases} 1 & \text{if } a > 0 \\ y(a) + k & \text{if } a \le 0 \end{cases}$$

Neuron is mostly learning

Activation Functions *Summary*

Name	y(a)	Plot	y'(a)	Comments
Logistic sigmoid	$\frac{1}{1+e^{-s}}$		y(a)(1-y(a))	Vanishing gradients
Hyperbolic tangent	tanh(a)		$1 - y^2(a)$	Vanishing gradients
Rectified Linear Unit (ReLU)	$\begin{cases} a & \text{if } a > 0 \\ 0 & \text{if } a \le 0 \end{cases}$		$\begin{cases} 1 \\ 0 \end{cases}$	Dead neurons. Sparsity.
Leaky ReLU	$\begin{cases} a & \text{if } a > 0 \\ ka & \text{if } a \le 0 \end{cases}$	3	$\begin{cases} 1 \\ k \end{cases}$	0 < k < 1
Exponential Linear Unit (ELU)	$\begin{cases} a & \text{if } a > 0 \\ k(e^a - 1) & \text{if } a \le 0 \end{cases}$,	$\begin{cases} 1 \\ y(a) + k \end{cases}$	<i>k</i> > 0.

- ► Saturated sigmoidal neurons stop learning. Piecewise-linear units keep learning by avoiding saturation.
- ELU has been shown to lead to better accuracy and faster training.
- Take home message: For hidden neurons, use a member of the LU family. They avoid i) saturation and ii) the vanishing gradient problem.