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So far . . .

I Neural Networks are universal approximators.
I Backpropagation allows computation of derivatives in hidden layers.
I Gradient descent finds weights corresponding to local minimum of loss

surface.
I 1st- and 2nd-order variants of gradient descent can be faster and better.
I In this lecture:

I Momentum-based first-order methods
I Momentum
I Nesterov Accelerated Gradient
I RMSprop
I ADAM
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Momentum Updates

Basic idea
I Keep track of oscillating directions.
I Increase learning rate in directions that converge smoothly.
I Decrease learning rate in directions that overshoot and oscillate.

Steps
1. Compute gradient step −η ∇wL|wτ at the current location wτ .
2. Add the scaled previous step β∆wτ to obtain a running average of the

step

∆wτ+1 = β∆wτ − η ∇wL|wτ

Typically β = 0.9.
3. Update parameters by the running average of the step

wτ+1 = wτ + ∆wτ+1
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Why does momentum work?

I Directions that oscillate will cancel each other out in the running average.
I So the running average will be small in magnitude.
I So the steps for oscillating directions will be smaller.

I Directions that are consistently converging will be reinforced.
I So the running average will be large in magnitude.
I So those directions will gain momentum by having larger and larger steps.
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Nesterov Accelerated Gradient

Same idea as momentum updates but with steps 1 and 2 swapped.
1. Extend the previous scaled step.

ŵ = wτ + β∆wτ

2. Compute gradient step at resultant location ŵ.

−η ∇wL|ŵ
3. Add previous scaled step and new gradient step to obtain the running

average of the step

∆wτ+1 = β∆wτ − η ∇wL|ŵ
4. Update parameters by the running average of the step

wτ+1 = wτ + ∆wτ+1

Nesterov’s method has been shown to converge faster than momentum
updates.
Nazar Khan Deep Learning



Momentum Nesterov Momentum RMSprop ADAM

Momentum vs. Nesterov Momentum

Nesterov – Sometimes it is better to make a correction after making an error.
Source: Bhiksha Raj
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RMSprop

I Decouple each direction.
I We can compute the running average of the squared 1st-derivative in

direction i as

v̄ τi = γv̄ τ−1
i + (1− γ)

(
∂L

∂wi

)2

with initialization v̄0
i = 0.

I Root-mean-squared (RMS) value
√

v̄ τi + ε represents average magnitude
of 1st-derivative for direction i .
I High value indicates oscillating derivatives. So reduce learning rate.
I Low value indicates flat region. So increase learning rate.

I So divide learning rate by this average before performing gradient descent.

w τ
i = w τ−1

i − η√
v̄ τi + ε

∂L

∂wi
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Rprop vs RMSprop

Rprop

Multiplicatively increase learning
rate when derivative retains its
sign.

η ← αη

Multiplicatively decrease learning
rate when derivative oscillates.

η ← βη

RMSprop

Multiplicatively increase/decrease
learning rate when average
derivative magnitude
decreases/increases.

η ← η0√
v̄ + ε

Fixed multiplicative factors α and β in Rprop are replaced by adaptive
factor 1√

v̄+ε
in RMSprop.
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ADAM
RMSprop+Momentum

I RMSprop uses the current derivative.
I ADAM1 replaces current derivative by its running average.

m̄τ
i = δm̄τ−1

i + (1− δ)
∂L

∂wi

I Currently the most popular flavor of gradient descent.
I Statistics terminology:

I Average of random variable x is also called its 1st statistical moment E [x ].
I Average of the square of a random variable is also called its 2nd uncentered

statistical moment E [x2].
I Average of the square of a centered random variable is also called its 2nd

statistical moment E [(x − µ)2] or variance.

1Kingma and Ba, ‘ADAM: A Method for Stochastic Optimization’.
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ADAM
RMSprop+Momentum

I Initialize moments m̄0
i = 0 and v̄0

i = 0.
I Compute 1st moment and 2nd uncentered moment of derivative

m̄τ
i = δm̄τ−1

i + (1− δ)
∂L

∂wi

v̄ τi = γv̄ τ−1
i + (1− γ)

(
∂L

∂wi

)2

I Correct for bias of initial moments (= 0) by scaling up in early iterations.

m̄τ
i =

m̄τ
i

1− δτ
and v̄ τi =

v̄ τi
1− γτ

I Perform update

w τ
i = w τ−1

i − η√
v̄ τi + ε

m̄τ
i

I Proposed hyperparameter values: η = 10−3, δ = 0.9, γ = 0.999, ε = 10−8.
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Summary

I For complex and non-convex loss functions of deep networks, vanilla
gradient descent can get stuck in poor local minima and saddle points.

I It can also converge very slowly.
I Different directions require different learning rates.
I Adaptive learning rates are very important.
I Most useful technique is to adapt learning rate based on recent trend of

1st-derivative.
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