
DISCRIMINATIVE DICTIONARY LEARNING WITH SPATIAL PRIORS

Nazar Khan, Marshall F. Tappen

University of Central Florida
School of Electrical Engineering and Computer Science, Orlando, FL

nazar,mtappen@cs.ucf.edu

ABSTRACT

While smoothness priors are ubiquitous in analysis of visual

information, dictionary learning for image analysis has tradi-

tionally relied on local evidences only. We present a novel

approach to discriminative dictionary learning with neighbor-

hood constraints. This is achieved by embedding dictionar-

ies in a Conditional Random Field (CRF) and imposing la-

beldependent smoothness constraints on the resulting sparse

codes at adjacent sites. This way, a smoothness prior is used

while learning the dictionaries and not just to make inference.

This is in contrast with competing approaches that learn dic-

tionaries without such a prior. Pixel-level classification re-

sults on the Graz02 bikes dataset demonstrate that dictionar-

ies learned in our discriminative setting with neighborhood

smoothness constraints can equal the state-of-the-art perfor-

mance of bottom-up (i.e. superpixel-based) segmentation ap-

proaches.
Furthermore, we isolate the benets of our learning formu-

lation and CRF inference to show that our dictionaries are

more discriminative than dictionaries learned without such

constraints even without CRF inference. An additional benet

of our smoothness constraints is more stable learning which

is a known problem for discriminative dictionaries.

Index Terms— Dictionary Learning, Smoothness Prior,

Pixel-level Classicaiton, Segmentation, Discriminative

1. INTRODUCTION

Discriminative learning of sparse-coding based dictionaries

has been shown to improve performance on various computer

vision tasks. Interestingly, while these dictionaries are often

eventually used for analyzing natural images which are char-

acterized by a local smoothness prior, no such local neigh-

borhood context is used in the dictionary learning process.

We show how to discriminatively learn dictionaries while en-

forcing smoothness constraints from the local spatial neigh-

borhoods. This is done by embedding the dictionary learning

framework in a Conditional Random Field (CRF).
Dictionary learning has successfully been used for vari-

ous signal classication tasks such as pixel-level classication

of images [1, 2, 3, 4], object localization [5], image classi-

cation [6], face recognition [7] and video classication [8, 9].
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[11] [12] Ours

Structured Prediction × X X

Smoothness Constraints X × X

Per-class Dictionaries × × X

Linear Classifier X X ×

Table 1. Comparison with closely related approaches.

Standard approaches learn dictionaries either reconstructively

[10] or discriminatively [1, 2, 3, 6, 4] but do not attempt to ex-

ploit neighborhood context in the learning process.

Images of real world objects in real world settings exhibit

strongly smooth labels. Generally, pixels from a certain class

lie adjacent to each other. This calls for a smoothness prior in

the energy formulation and it allows us to enforce smoothness

constraints on neighboring sparse code pairs for a dictionary.

But since boundaries of objects do not share this smoothness

prior, there is a need for a discontinuity preserving prior too.

This discontinuity preserving prior is what allows us to en-

force (non-)smoothness constraints between dictionariesfrom

different classes. To the best of our knowledge, this is the

rst attempt at learning discriminative dictionaries for pixel

classication with label and location dependent sparse code

(non-)smoothness constraints.

The closest related work in terms of smoothness con-

straints is that of Guo et al. [11] which uses sparse code

smoothness constraints for image classication. The key dif-

ference from their work is that we operate on the pixel level

and therefore ours is a structured prediction problem while

theirs is a standard classication problem. For a given image,

they infer a single label while we infer the pixel labelling

structure. Another closely related work is that of Yang &

Yang [12] that also embeds a dictionary in a CRF. However,

despite making use of the structured CRF grid, they impose

no smoothness constraints during dictionary learning. Mairal

et al. [13] use simultaneous sparse coding whereby similar

image patches are encouraged to have similar sparse codes.

We use the same intuition but for learning dictionaries in-

stead of sparse code computation and we use a neighborhood

structure instead of patch similarity. Table 1 summarizes the

relationships between our work and its closest counterparts.

Besides increased discriminability, an additional benefit

of our smoothness constraints is the mitigation of numeri-

cal instability which is inherent to discriminative dictionary
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learning [1, 4]. Interestingly, a recent stability analysis [14]

for reconstructive dictionaries also concluded that sparse code

smoothness plays an important role in stable learning.

2. PRELIMINARIES

For an image y with ground-truth labeling x, let V be a uni-

formly spaced grid of image locations or ‘sites’and yi ∈ R
n

be an n dimensional feature vector extracted at site i ∈ V .

For each site i, Ni denotes the neighboring sites of i and

xi ∈ {1 . . . C} denotes the true label.
For each feature vector yi ∈ R

n, let sic ∈ R
k be its

sparse code vector under a dictionary Dc ∈ R
n×k for class

c ∈ {1 . . . C}. The sparse code vector sic is obtained as a

solution to the `1 sparse coding problem

sic(yi,Dc) = arg min
s∈Rk

1

2
||yi −Dcs||

2
F + λ||s||1 (1)

The reconstruction error Ric for a signal yi under a dictio-

nary Dc is computed using the optimal sparse code vector sic
obtained via (1)

Ric(yi,Dc) =
1

2
||yi −Dcsic||

2
F + λ||sic||1 (2)

Ri ∈ R
C denotes the vector of per-class reconstruction errors

for signal yi. Both (1) and (2) are rendered non-differentiable

with respect to dictionary Dc due to the presence of the `1
norm. However, implicit differentiation can be employed to

compute such gradients. Details can be found in [15, 16, 12].

3. DISCRIMINATIVE DICTIONARY LEARNING

WITH SPATIAL PRIOR

Let Y = [y(1), . . . ,y(N)] be N training images with cor-

responding labelings X = [x(1), . . . ,x(N)]. Let Si =
[si1, . . . , siC ] denote the matrix of sparse codes of signal

yi under each of the C dictionaries. Without loss of gener-

ality, let L be the set of all possible labelings on any given

grid of sites. Clearly, L is an exponentially large set. Then

the probability of image labeling x(t) conditioned on the

observed image y(t) can be written as a Gibbs field

P (x(t)|y(t), {D}C1 ,κ) =
1

Z
e−E(x(t),y(t),{D}C

1 ,κ) (3)

where Z =
∑

x∈L e
−E(x,y(t),{D}C

1 ,κ) is the so-called parti-

tion function and

E(x(t),y(t), {D}C1 ,κ) =
∑

i∈V(t)

Ei(x
(t),y(t), {D}C1 ,κ)

=
∑

i∈V(t)

e−κdata
(

DRi
xi

+ e−κrec

Rixi

)

︸ ︷︷ ︸

data term

+ e−κsmooth
∑

j∈Ni

e−κind

δ̄xixj
+ e−κdep

sdep

︸ ︷︷ ︸

smoothness term

(4)

where DRi
xi

= Rixi
R̄i is the discriminative deviation func-

tion [4] that encourages the reconstruction error for the true

class xi to be lowest among all classes. This leads to greater

discriminability. Value of κrec determines the weightage given

to the reconstructive term relative to the discriminative devi-

ation term. The data-independent smoothness term δ̄xixj
pe-

nalizes dissimilar labels on adjacent sites and rewards similar

labels. The data-dependent smoothness term is

sdep =− δxixj

(
Dp

xi
+ µpxi

)
+ δ̄xixj

pxi
(5)

where

p = sTixi
sj (6)

is a C dimensional vector of the similarity of site is sparse

code under dictionary Dxi
with all sparse codes of the adja-

cent site j. Entry pk denotes the similarity of sparse codes

sixi
and sjxk

. Here too, discriminative deviation is employed

to encourage smoothness of sparse codes at adjacent sites that

belong to the same class. The weights of the data term and

the smoothness term are determined by parameters κdata and

κsmooth respectively. Negative exponentials of all weights are

used to ensure positive weightings and unconstrained opti-

mization.
Data-dependent smoothness. The goal is to encourage sig-

nals with the same label to have similar sparse code vectors

and those with different labels to have dissimilar sparse code

vectors. During learning, this encourages dictionaries to be

more sensitive to object boundaries. During inference, this al-

lows smoothing to be reduced at edges (in feature space) and

results in sharper segmentations. For adjacent pixels i, j with

the same label xi = xj , the data-dependent smoothness term

encourages sparse code vectors sixi
and sjxi

under dictionary

Dxi
to be most similar among all classes. This is achieved by

once again employing the discriminative deviation function

as used in the data term. The advantage of using discrimi-

native deviation is dictionary learning with label-dependent

smoothness constraints on adjacent sparse codes. If only the

term sTixi
sjxi

is used instead, then only dictionary Dxi
is af-

fected. Parameter µ ≥ 0 determines the trade-off between

discriminative deviation and the similarity of the sparse code

vectors. For adjacent pixels with different labels, the sparse

code vectors only under dictionary Dxi
are encouraged to be

different. Since our graphical model contains loops, this even-

tually implies sparse code dissimilarity under both classes xi

and xj . However, no inter-dictionary constraint is enforced in

this case.
Energy function (4) makes our formulation a Discrimina-

tive Random Field (DRF) [17] which is a variant of a Con-

ditional Random Field (CRF) [18]. Instead of learning lin-

ear CRF parameter vectors, we learn non-linear dictionaries.

It has similarities with [12] but has a richer representational

model and includes data-dependent smoothness. Our formu-

lation tries to explain all classes instead of just foreground.

More importantly, the data-dependent smoothness term in-

cludes, in addition to the data, the dictionaries as well. Dur-

ing learning, this encourages dictionaries to have responses
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for neighboring pixels that reflect their labels. Therefore, en-

ergy function (4) imposes neighborhood constraints on the

discriminative dictionary learning frameworks from [1, 4]. It

can also be viewed as the structured prediction counterpart

of [11].

Stability. Our smoothness constraints can alternatively be

considered as pseudo-regularization of dictionaries based on

the regularity of pixel labels in natural images. It is well-

known that

1. Sparse coding is sensitive to incoherence among a dic-

tionary’s atoms [10], and

2. Discriminability is increased by having mutually inco-

herent dictionaries [3].

Therefore, it is beneficial to increase both intra- and inter-

dictionary incoherence. Intra-dictionary incoherence is en-

forced by δ̄xixj
pxi

in Equation (5). The discriminative de-

viation term Dp
xi

enforces inter-dictionary incoherence and

also leads to well-conditioned dictionaries by requiring ad-

jacent same-class sparse codes to be similar. One indicator

of ill-conditioned dictionaries is that the sparse coding yileds

very large values [14]. So conversely, by requiring adjacent

sparse codes to be (typically) similar, the dictionaries are en-

couraged to be well-conditioned. So our formulation con-

tains the well-known sources of stability and discrimination.

In contrast, despite embedding dictionary learning in a CRF

framework, Yang & Yang [12] do not impose such dictionary-

related smoothness constraints.

Inference and Parameter Learning. Computation of (3) and

its corresponding likelihood function require computation of

the partition function Z which is intractable due to the ex-

ponentially large size of the set L of all labelings. There-

fore, for inference we use approximate techniques such as

Mean Field Inference or Loopy Belief Propagation. For learn-

ing parameters, we use the pseudolikelihood approximation

which replaces the intractable computation of the true parti-

tion function by the tractable computations of local normal-

ization functions. A potential disadvantage of pseudolikeli-

hood is over-smoothed MAP inference [19] and this is han-

dled by learning the weights in κ.

Initialization. D : Dictionaries can be initialized to be ran-

dom or obtained through K-means, K-SVD or any other re-

constructive or even discriminative dictionary learning tech-

nique. In order to allow a fairer comparison with [12], we

initialize via K-means.

κ : Inference on the random field in (4) is very sensitive1 to

the smoothness weights κsmooth, κdep, and κind. Therefore, be-

fore learning, it is important to properly initialize them. Ini-

tializing κ = {κdata, κrec, κsmooth, κind, κdep} to {−2,−3,−1,
3, 10} was emiprically found to be a good starting point.

1[12], for instance, do not attempt to learn their smoothness weight w2

for this reason.

Fig. 1. Pixel-wise classification results for some test im-

ages from the Graz02 bike dataset. 1st Row: Original. 2nd

Row: Khan & Tappen [4] with vanilla Gaussian smoothing on

raw classification. 3rd Row: Yang & Yang [12] (CRF with

Potts model). The advantages of using boundary-preserving

smoothness can be clearly observed in 4th Row: Our CRF

inference on a grid with spacing of 4 pixels followed by in-

terpolation. 5th Row: Our CRF inference with classification

on a grid with spacing of 20 pixels followed by interpolation.

The labellings of [4] and [12] appear to be over-smoothed

and can tend to cross over object boundaries. While visually

inferior, such over-smoothing can lead to inated quantitative

results as hinted in [20]. Implementation of [12] was made

available by the original authors.

CRF+Dictionary Dictionary Shape Mask

Ours [12] [4] [3] [21]

72.1 62.4 69.5 68 61.8

Table 2. Comparison of EER (%) of precision-recall curves

for pixel-level classfication of Graz02 bike test set. Our re-

sults exceed the state-of-the-art in top-down dictionary learn-

ing based approaches and match the bottom-up super-pixel

based segmentation approach in [22].

4. EXPERIMENTS AND RESULTS

4.1. Graz02 Bike Dataset

To validate our formulation, we perform pixel-wise classifi-

cation on the Graz02 bikes dataset [23]. We select the first

300 images and use odd numbered images for training and

even numbered images for testing. For each image, dense

SIFT features are computed from overlapping patches of size

32 × 32 with a grid spacing of 20 pixels. Beliefs for miss-

ing pixels are interpolated from their neighborhoods. Some

results are shown in Figure 1.

Table 2 shows that our formulation achieves a better

equal-error-rate (EER) on the precision-recall curve than the

state-of-the-art in dictionary learning based approaches. Our

results match the superpixel based method of [22] which, like
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No CRF κ0 κ
∗

D0 55.1 58.2 66.7
D∗ 62.3 63.2 72.1

Table 3. EER values on Graz02 bike test set from using left

to right: no CRF inference, initial CRF weight paramters κ0,

learned CRF weight parameters κ∗ and top to bottom: initial

K-means dictionaries D0 and dictionaries learned with neigh-

borhood constraints D∗. The benefit of training CRF weight

parameters and the use of neighborhood constraints can be

seen in isolation. See text for details.

our approach, uses a single scale2.

Fig. 2. Some sample results on the Weizmann Horse dataset

and VOC 2007 dataset. The advantage of using neighborhood

information can be seen for cat segmentation on the cat and

dog image in which large patches on both animals are similar

and yet inference using our dictionaries was able to extract

the cat with rather crisp boundaries.

Benefit of Neighborhood Constraints Table 3 demonstrates

in isolation the benefits of training CRF weight parameters

and neighborhood constrained learning of dictionaries. Col-

umn 1, for instance, shows that dictionaries learned with

neighborhood constraints perform better even when inference

is carried out without spatial propagation of labels and row

2 generally shows that our learning formulation gives around

6% improvement over the initial dictionaries. Similarly, col-

umn 3 shows that learning of CRF weights results in around

10% improvement.

4.2. VOC 2007

Table 4 presents the EER values for figure-ground segmenta-

tion on the 20 categories of the Pascal VOC 2007 dataset [24]

and compares with the performance of dictionaries learned

using KSVD [10]. Training and testing is performed on the

images containing the relevant category. Figure 2 shows some

sample results. The advantage of using neighborhood infor-

mation can be seen for cat segmentation on the cat and dog

image in which large patches on both animals are similar and

2Even single scale superpixels offer more scale information compared to

fixed size patches on fixed grids

Class KSVD [10] Ours

aeroplane 35.2 43.7
bicycle 28.3 41.2

bird 35.3 42.3
boat 26.3 35.5

bottle 16.1 30.2
bus 43.7 69.0
car 29.1 43.2
cat 39.9 63.3

chair 9.1 10.6
cow 46.0 70.0

dining table 38.8 52.7
dog 33.3 51.5

horse 36.6 42.0
motorbike 47.2 62.9

person 28.3 43.0
potted plant 23.0 31.4

sheep 47.5 54.3
sofa 21.8 28.0
train 54.3 74.0

tv/monitor 16.3 29.1

Table 4. EER values for figure-ground segmentation on the

VOC 2007 dataset.

yet inference using our dictionaries was able to extract the cat

with rather crisp boundaries.
For classification against all other categories in the man-

ner of Yang & Yang [12], we trained a dictionary for the cow

category on the 422 training images and tested on all 210 test

images. We obtain 8.5% EER on the pixel level compared to

the 8% on patches reported in [12]. It should be noted that

in [12], going from patch to pixel level was seen to decrease

performance by around 10%.

5. CONCLUSION

We have introduced a novel discriminative dictionary learn-

ing procedure that imposes neighborhood contraints during

the learning process. This is motivated by the smoothness and

boundary-preserving priors on natural images and achieved

by embedding dictionary learning in a CRF framework. As

an additional benefit, such smoothness constraints lead to

stable dictionary learning which is inherent to the problem

of discriminative dictionary learning. Detailed analysis on

the Graz02 bike dataset demonstrates a distinct quantitative

as well as qualitative advantage over competing dictionary-

based approaches.
While results are shown for the 2-class case only, the for-

mulation applies to the general N -class case. However, this

can potentially lead to a significant increase in sparse coding

computation. An alternative is an N -class learning formu-

lation that performs discriminative sparse coding on a single

dictionary for all classes.
An interesting extension is the use of sparse long range

random fields [25] for dictionary learning via multiscale in-

formation.
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