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Introduction

Traditional sparse coding has assumed independent image
patches.

But real-world image patches are not independent – a
Markovian dependency (i.e. spatial prior) is often assumed.

We show how spatial priors can be incorporated for learning
dictionaries.

We retain discriminability in the spatial prior.



Sparse Coding

Finding the sparse vector of coefficients s∗ in an
over-complete basis.

y
D−→ s∗

where |s∗| > |y| and s∗ is sparse.

Basis for new space is the so called dictionary D.

We use `1-sparse coding

s∗ = arg min
s
||y −Ds||2F︸ ︷︷ ︸

reconstruction error

+ λ||s||1︸ ︷︷ ︸
sparsity constraint



Dictionary Learning (DL)

Finding the over-complete basis D∗ that optimally
reconstructs a set Y of signals in a sparse coding manner.

{y1, y2, . . . , yN}︸ ︷︷ ︸
Y

−→
{

D∗

s∗1, s
∗
2, . . . , s

∗
N

}

Find dictionary as well as sparse codes that optimally
reconstruct the set Y.

Formally,

D∗,A∗ = arg min
D,S

1

2
||Y −DS||2F + λ

N∑
j=1

||sj ||1



Classification via Dictionaries

Training (N classes)

Class 1 Class 2 . . . Class N
↑ ↑ . . . ↑

D1 D2 . . . DN

Testing (signal y)

arg min
i∈{1...N}

Ri

where Ri = 1
2 ||y −Dis

∗
i ||2F .

Learn dictionaries for each class and classify test signal into
class with least reconstruction error.

Final goal is classification but dictionaries are learned in
a reconstructive manner.



Reconstructive vs. Discriminative Dictionary Learning

Reconstructive

Class 1 Class 2 Class3
D1 X ? ?
D2 ? X ?
D3 ? ? X

Di good for class i but nothing
stops it from being good for
some other class too.

Discriminative

Class 1 Class 2 Class3
D1 X × ×
D2 × X ×
D3 × × X

Di good for class i and bad for
other classes.



Data Term: Discriminative Deviation

Let Ri = 1
2 ||y −Disi ||2 be the reconstruction error of signal y

under dictionary Di .

For the vector of reconstruction errors R = [R1,R2, . . . ,RN ],
define discriminative deviation

Dt = Rt − R̄

where t is the true class.

Minimizing Dt encourages reconstruction error for the true
class to be lower than those for all other classes.

Alternatively, dictionaries for other classes should do worse
than true class.

Joint, discriminative learning over all classes.



Smoothness Term

Real-world images are characterized by a spatial smoothness
prior.

Even stronger prior for image labellings.

The DL problem should respect this prior.



Learning with Spatial Priors

If adjacent labels are same, sparse codes under this label
should be more similar than under all other labels of the
neighbor.

Use discriminative deviation function again.

If adjacent labels are different, sparse codes under both labels
should not be similar. Leads to boundary preservation.

ψ(si , sj) ∝

{
−D(sTi sj), if labels are same

sTi sj , if labels are different

Spatial prior =⇒ CRF Energy Formulation



Learning with Spatial Priors

During learning, prior is

useful for dictionary learning because it includes the sparse
codes,
discriminative because it is label-dependent,

During inference, prior is

boundary preserving



CRF Energy Formulation

Consider image I as a structured grid (I −→ G (V, E)) with
labelling y corresponding to C classes.

When y represents ground-truth, we want

min
{D}C1

∑
I∈training images

∑
i∈V
Dyi +Ryi +

∑
(i ,j)∈E

ψij


︸ ︷︷ ︸

E(y,I,{D}C1 )

Dyi encourages discrimination.

Ryi encourages reconstruction.

ψij encourages spatial coherence with boundary preservation.

All three objectives can be weighted by κ = {κD,κR,κψ}.
Parameters to be learned are the dictionaries {D}C1 and the
CRF parameters κ.



Learning on a CRF

P(y|I) ∝ e−E(y,I).

Intractable partition function.

Maximize pseudolikelihood to learn {{D}∗,κ∗}.
Potential problem with over-smoothness [VSSM06].

Handled via learning of optimal κ.

Requires gradient of the non-differentiable `1 sparse coding
procedure

Use implicit differentiation.



Smoothness ⇒ stability

Sparse codes with very large entries ⇒ ill-conditioned
dictionary [DXW11].

Conversely, by requiring adjacent sparse codes to be (typically)
similar, the dictionaries are encouraged to be well-conditioned.

This is useful since discriminative DL is inherently unstable.

Reconstruction-discrimination tradeoff.



Experiments and Results

Pixelwise classification into foreground/background for Graz02 bike
dataset.

Data Term+Prior Data Term Shape Mask

Ours [YY12] [KT12] [RSS10] [MS12]

72.1 62.4 69.5 68 61.8

Table: Comparison of Equal Error Rate (EER %) of precision-recall
curves for pixel-level classfication of Graz02 bike test set. Our results
exceed the state-of-the-art in top-down dictionary learning based
approaches and match the bottom-up super-pixel based segmentation
accuracy from [FVS09].



Pixelwise classification on Graz02 bike dataset

Original
filler
filler
filler
Data Term + Post Filtering
[KT12]
filler
filler
filler
CRF + Potts model [YY12]
filler
filler
filler
Ours
filler
filler
filler
Ours (coarser grid)



Learning the spatial prior is beneficial
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Figure: Benefit of training iterations on the equal error rate (EER) of the
precision-recall curve of the test data for Graz02 bike category. Our
learning procedure (in red) without additional smoothing was able to
learn CRF parameters that out-perform manual smoothing after 8
iterations.



D∗ and κ∗ in isolation

No Spatial Term κ0 κ∗

D0 55.1 58.2 66.7

D∗ 62.3 63.2 72.1

Table: Column-wise: For inference, learned κ is better than fixed κ
which is better than unary beliefs. Row-wise: DDL with spatial priors is
better than fixed k-means dictionaries, even when inferring without a
spatial prior (62.3% vs. 55.1%).



Other datasets

Figure: Some sample results on the Weizmann Horse dataset and VOC
2007 dataset.



VOC 2007 dataset

Class KSVD[AEB05] Ours

aeroplane 35.2 43.7
bicycle 28.3 41.2

bird 35.3 42.3
boat 26.3 35.5

bottle 16.1 30.2
bus 43.7 69.0
car 29.1 43.2
cat 39.9 63.3

chair 9.1 10.6
cow 46.0 70.0

Table: EER values for figure-ground segmentation on the VOC 2007
dataset.



VOC 2007 dataset

Class KSVD[AEB05] Ours

dining table 38.8 52.7
dog 33.3 51.5

horse 36.6 42.0
motorbike 47.2 62.9

person 28.3 43.0
potted plant 23.0 31.4

sheep 47.5 54.3
sofa 21.8 28.0
train 54.3 74.0

tv/monitor 16.3 29.1

Table: EER values for figure-ground segmentation on the VOC 2007
dataset.



Conclusion

A spatial smoothness prior is beneficial for learning
discriminative dictionaries for the pixel classification task.

Issues raised:

Structures can exist at multiple scales. Are pairwise, single
scale spatial constraints too restrictive?
In the language of the seminal sparse coding works by Field et
al. [OF96, OF97]

do simple-cell receptive field properties still emerge when
sparsity and spatial constraints are used for learning?
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Questions?
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