Discriminative Dictionary Learning with Spatial Priors

Nazar Khan^{1,2} Marshall Tappen²

¹Lahore University of Management Sciences, Pakistan

²University of Central Florida, USA

ICIP 2013, Melbourne, Australia September 18, 2013

- Traditional sparse coding has assumed independent image patches.
- But real-world image patches are not independent a Markovian dependency (*i.e.* spatial prior) is often assumed.
- We show how spatial priors can be incorporated for learning dictionaries.
- We retain discriminability in the spatial prior.

• Finding the sparse vector of coefficients **s**^{*} in an over-complete basis.

$$\mathbf{y} \xrightarrow{\mathbf{D}} \mathbf{s}^*$$

where $|\mathbf{s}^*| > |\mathbf{y}|$ and \mathbf{s}^* is sparse.

- Basis for new space is the so called dictionary **D**.
- We use ℓ_1 -sparse coding

$$\mathbf{s}^{*} = \arg\min_{\mathbf{s}} \underbrace{||\mathbf{y} - \mathbf{Ds}||_{F}^{2}}_{\text{reconstruction error}} + \underbrace{\lambda ||\mathbf{s}||_{1}}_{\text{sparsity constraint}}$$

Dictionary Learning (DL)

• Finding the over-complete basis **D**^{*} that optimally reconstructs a set **Y** of signals *in a sparse coding manner*.

$$\underbrace{\{ \underbrace{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N \}}_{\mathbf{Y}} \longrightarrow \left\{ \begin{array}{c} \mathbf{D}^* \\ \mathbf{s}_1^*, \mathbf{s}_2^*, \dots, \mathbf{s}_N^* \end{array} \right\}$$

- Find dictionary as well as sparse codes that optimally reconstruct the set **Y**.
- Formally,

$$\mathbf{D}^*, \mathbf{A}^* = \arg\min_{\mathbf{D}, \mathbf{S}} \frac{1}{2} ||\mathbf{Y} - \mathbf{DS}||_F^2 + \lambda \sum_{j=1}^N ||\mathbf{s}_j||_1$$

Classification via Dictionaries

• Training (N classes) Class 1 Class 2 ... Class N \uparrow \uparrow ... \uparrow D_1 D_2 ... D_N • Testing (signal y)

$$\arg\min_{i\in\{1...N\}}\mathcal{R}_i$$

where $\mathcal{R}_i = \frac{1}{2} ||\mathbf{y} - \mathbf{D}_i \mathbf{s}_i^*||_F^2$.

- Learn dictionaries for each class and classify test signal into class with least reconstruction error.
- Final goal is classification but dictionaries are learned in a reconstructive manner.

Reconstructive vs. Discriminative Dictionary Learning

Reconstructive

	Class 1	Class 2	Class3
\mathbf{D}_1	\checkmark	?	?
\mathbf{D}_2	?	\checkmark	?
D_3	?	?	\checkmark

 D_i good for class *i* but nothing stops it from being good for some other class too.

Discriminative

	Class 1	Class 2	Class3
D_1	\checkmark	×	×
\mathbf{D}_2	×	\checkmark	×
D ₃	×	×	\checkmark

D_{*i*} good for class *i* and bad for other classes.

Data Term: Discriminative Deviation

- Let *R_i* = ¹/₂||**y** − **D**_i**s**_i||² be the reconstruction error of signal **y** under dictionary **D**_i.
- For the vector of reconstruction errors $\mathcal{R} = [\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_N]$, define *discriminative deviation*

$$\mathcal{D}_t = \mathcal{R}_t - \bar{\mathcal{R}}$$

where t is the true class.

- Minimizing \mathcal{D}_t encourages reconstruction error for the true class to be lower than those for all other classes.
- Alternatively, dictionaries for other classes should do worse than true class.
- Joint, discriminative learning over all classes.

Smoothness Term

- Real-world images are characterized by a spatial smoothness prior.
 - Even stronger prior for image labellings.

• The DL problem should respect this prior.

- If adjacent labels are same, sparse codes under this label should be more similar than under all other labels of the neighbor.
 - Use discriminative deviation function again.
- If adjacent labels are different, sparse codes under both labels should not be similar. Leads to *boundary preservation*.

$$\psi(s_i, s_j) \propto \begin{cases} -\mathcal{D}(s_i^T s_j), & \text{if labels are same} \\ s_i^T s_j, & \text{if labels are different} \end{cases}$$

• Spatial prior \implies CRF Energy Formulation

- During learning, prior is
 - useful for dictionary learning because it includes the sparse codes,
 - discriminative because it is label-dependent,
- During inference, prior is
 - boundary preserving

CRF Energy Formulation

- Consider image I as a structured grid (I → G(V, E)) with labelling y corresponding to C classes.
- When y represents ground-truth, we want

$$\min_{\{\mathbf{D}\}_{1}^{C}} \sum_{\mathbf{l} \in \text{training images}} \underbrace{\left(\sum_{i \in \mathcal{V}} \mathcal{D}_{\mathbf{y}_{i}} + \mathcal{R}_{\mathbf{y}_{i}} + \sum_{(i,j) \in \mathcal{E}} \psi_{ij}\right)}_{E(\mathbf{y},\mathbf{l},\{\mathbf{D}\}_{1}^{C})}$$

- $\mathcal{D}_{\mathbf{y}_i}$ encourages discrimination.
- $\mathcal{R}_{\mathbf{y}_i}$ encourages reconstruction.
- ψ_{ij} encourages spatial coherence with boundary preservation.
- All three objectives can be weighted by $\kappa = {\kappa_{\mathcal{D}}, \kappa_{\mathcal{R}}, \kappa_{\psi}}.$
- Parameters to be learned are the dictionaries {D}₁^C and the CRF parameters κ.

Learning on a CRF

- $P(\mathbf{y}|\mathbf{I}) \propto e^{-E(\mathbf{y},\mathbf{I})}$.
- Intractable partition function.
 - Maximize *pseudolikelihood* to learn $\{\{\mathbf{D}\}^*, \boldsymbol{\kappa}^*\}$.
- Potential problem with over-smoothness [VSSM06].
 - Handled via learning of optimal κ .
- Requires gradient of the non-differentiable ℓ_1 sparse coding procedure
 - Use implicit differentiation.

- Sparse codes with very large entries \Rightarrow ill-conditioned dictionary [DXW11].
- Conversely, by requiring adjacent sparse codes to be (typically) similar, the dictionaries are encouraged to be well-conditioned.
- This is useful since *discriminative* DL is inherently unstable.
 - Reconstruction-discrimination tradeoff.

Pixelwise classification into foreground/background for Graz02 bike dataset.

Data Term+Prior		Data Term		Shape Mask
Ours	[YY12]	[KT12]	[RSS10]	[MS12]
72.1	62.4	69.5	68	61.8

Table: Comparison of Equal Error Rate (EER %) of precision-recall curves for pixel-level classfication of Graz02 bike test set. Our results exceed the state-of-the-art in top-down dictionary learning based approaches and match the bottom-up super-pixel based segmentation accuracy from [FVS09].

Pixelwise classification on Graz02 bike dataset

Original

Data Term + Post Filtering [KT12]

CRF + Potts model [YY12]

Ours

Ours (coarser grid)

Learning the spatial prior is beneficial

Figure: Benefit of training iterations on the equal error rate (EER) of the precision-recall curve of the test data for Graz02 bike category. Our learning procedure (in red) without additional smoothing was able to learn CRF parameters that out-perform manual smoothing after 8 iterations.

	No Spatial Term	κ_0	κ^*
D ₀	55.1	58.2	66.7
D *	62.3	63.2	72.1

Table: **Column-wise**: For inference, learned κ is better than fixed κ which is better than unary beliefs. **Row-wise**: DDL with spatial priors is better than fixed k-means dictionaries, *even when inferring without a spatial prior* (62.3% vs. 55.1%).

Figure: Some sample results on the Weizmann Horse dataset and VOC 2007 dataset.

Class	KSVD[AEB05]	Ours
aeroplane	35.2	43.7
bicycle	28.3	41.2
bird	35.3	42.3
boat	26.3	35.5
bottle	16.1	30.2
bus	43.7	69 .0
car	29.1	43.2
cat	39.9	63.3
chair	9.1	10.6
cow	46.0	70.0

Table: EER values for figure-ground segmentation on the VOC 2007 dataset.

Class	KSVD[AEB05]	Ours
dining table	38.8	52.7
dog	33.3	51.5
horse	36.6	42.0
motorbike	47.2	62 .9
person	28.3	43 .0
potted plant	23.0	31.4
sheep	47.5	54.3
sofa	21.8	28 .0
train	54.3	74.0
tv/monitor	16.3	29 .1

Table: EER values for figure-ground segmentation on the VOC 2007 dataset.

- A spatial smoothness prior is beneficial for learning discriminative dictionaries for the pixel classification task.
- Issues raised:
 - Structures can exist at multiple scales. Are pairwise, single scale spatial constraints too restrictive?
 - In the language of the seminal sparse coding works by Field *et al.* [OF96, OF97]
 - do simple-cell receptive field properties still emerge when sparsity *and spatial constraints* are used for learning?

References I

- Michal Aharon, Michael Elad, and Alfred Bruckstein, K-svd: Design of dictionaries for sparse representation, SPARS, 2005.
- Wei Dai, Tao Xu, and Wenwu Wang, Simultaneous codeword optimization (simco) for dictionary update and learning, CoRR abs/1109.5302 (2011).
- B. Fulkerson, A. Vedaldi, and S. Soatto, Class segmentation and object localization with superpixel neighborhoods, Proc. ICCV, 2009.
- Nazar Khan and Marshall Tappen, *Stable discriminative dictionary learning via discriminative deviation*, ICPR, 2012.
- Marcin Marszalek and Cordelia Schmid, *Accurate object recognition with shape masks*, International Journal of Computer Vision (2012), 191–209.

References II

- Bruno A Olshausen and David J Field, *Emergence of* simple-cell receptive field properties by learning a sparse code for natural images, Nature 381 (1996), no. 6583, 607-609.
- _____, Sparse coding with an overcomplete basis set: A strategy employed by v1?, Vision research 37 (1997), no. 23, 3311-3325.
- Ignacio Ramirez, Pablo Sprechmann, and Guillermo Sapiro, Classification and clustering via dictionary learning with structured incoherence and shared features. CVPR. 2010.
- S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin P. Murphy, Accelerated training of conditional random fields with stochastic gradient methods, In ICML, 2006, pp. 969–976.
- Jamie Yang and Ming-Hsuang Yang, Top-down visual saliency via joint CRF and dictionary learning., CVPR, 2012.

Questions?