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Abstract

Discriminative learning of sparse-code based dictio-

naries tends to be inherently unstable. We show that us-

ing a discriminative version of the deviation function to

learn such dictionaries leads to a more stable formula-

tion that can handle the reconstruction/discrimination

trade-off in a principled manner. Results on Graz02 and

UCF Sports datasets validate the proposed formulation.

1. Introduction

Sparse coding offers a generalization of vocabulary1

based bag-of-words approaches to recognition of ob-

jects. Whereas a standard bag-of-words approach rep-

resents an input signal as an optimally sparse vector

based on the closest vocabulary word, sparse coding al-

lows representing signals using a linear combination of

a few dictionary items. In order to improve upon the

ultimate goal of better recognition/classification, mul-

tiple approaches attempt to compute dictionaries in a

discriminative manner.

One approach for obtaining discriminative dictionar-

ies is to compute a large overcomplete dictionary in a

reconstructive manner and then to extract the more dis-

criminative items from it using mutual information be-

tween dictionary items and class labels [3, 4, 5, 8]. But

the fundamental weakness of this approach is that the

initial reconstructive dictionary places a ceiling on the

discriminability of the extracted dictionary.

A better alternative is to incorporate discriminability

into the reconstructive dictionary learning framework

[6, 7, 9]. However, these approaches suffer from the in-

stability of the discriminative term and require careful

tuning of the reconstructive and discriminative parame-

ters in order to avoid instability.

In this work we follow this second approach and in-

troduce a discriminative version of the deviation func-

tion that yields a more stable learning formulation by

1Alternative terms in literature are codebooks, dictionaries.

allowing the trade-off between reconstruction and dis-

crimination to be handled in a more principled manner

via constraining the search-space for the tuning param-

eter.

2. Preliminaries

An input signal x ∈ R
n can be represented using

a sparse code vector αj ∈ R
k under an overcomplete

(n < k) dictionaryDj ∈ R
n×k obtained as the solution

to the sparse coding problem

αj = arg min
α∈Rk

||x−Djα||2F s.t ||α||0 ≤ L (1)

where L is the sparsity factor (maximum number of

non-zero coefficients in α)2. This can be thought of as

a generalization of standard vocabulary based bag-of-

words approaches where an input signal is represented

as an optimally sparse vector consisting of only one

non-zero coefficient corresponding to the closest vocab-

ulary word. The reconstruction error Rj for signal x

under dictionaryDj can be computed as

Rj = ||x−Djαj ||2F (2)

For a set of M signals x1 . . .xM , the optimal recon-

structive dictionaryD and sparse codes α can be com-

puted via

D,α = argmin
D,α

M∑

i=1

R(xi) (3)

which can be solved via the KSVD [1] or MOD [2] al-

gorithms.

For N class classification, per-class dictionaries

D1 . . .DN can be learned and a test signal x can be

classified via argminj=1...N Rj . In order to make the

dictionaries more discriminative we incorporate a dis-

criminative deviation function into the learning frame-

work and this is explained next.

2In the rest of the paper, sparsity factor L is implied on every

sparse code α.



3. Discriminative Deviation Function

For a set of values x1, . . . , xN deviation is defined

as the difference between an observed value xi and the

mean x. For a signal belonging to class i we define

reconstruction error based discriminative deviation as

Di = Ri −
∑N

j=1 Rj

N
(4)

which is positive if Ri is above the mean

∑N
j=1

Rj

N
and

negative if Ri is below the mean. Minimizing Di for a

signal from class i encourages the reconstruction error

Ri to be lowest amongR1, . . . ,RN . This leads to more

discriminability and allows us to obtain the following

discriminative dictionary learning formulation

C({D}Nj=1) = min
{D}N

j=1

N∑

i=1

∑

l∈Si

(Dli + γRli) (5)

where Si is the set of input signals belonging to class i
and Dli is the discriminative deviation Di(xl) of signal
xl for class i andRli is the reconstruction errorRi(xl).
The reconstructive weight γ > 0 controls the trade-off

between discrimination and reconstruction.

One can show via Jensen’s inequality that Di is

a lower-bound on the discriminative softmax function

(Ci = log
∑N

j=1 e
(−λ(Rj−Ri)) used byMairal et al. [6].

Therefore, objective function (5) is also a lower-bound

on the discriminative cost function found in [6] with

very similar behavior as demonstrated in Figure 1. It

is important to note that this behavior is achieved with-

out the discriminative parameter λ from [6].

In [6], a continuation strategy is proposed for sta-

ble iterative minimizationwhereby parameter values are

initially set to values corresponding to stable recon-

structive optimization and gradually changed to move

towards the more discriminative but less stable opti-

mization. However, the search space for the parameters

remains unclear. We show in the next section how cost

function (5) can be made more stable by constraining

the search space of the reconstructive parameter γ and

using it as a true trade-off parameter.

4. Stable Discriminative Dictionary Learn-
ing (SDDL)

By constraining γ to lie between 0 and 1, the follow-
ing more balanced objective function can be obtained

C({D}Nj=1) = min
{D}N

j=1

N∑

i=1

∑

l∈Si

(1 − f(γ))Dli + γRli

(6)
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Figure 1. Comparison of the discrimina-
tive deviation based objective function (5)

with the discriminative softmax based ob-
jective function from [6] for 100 different
dictionary configurations. Function (5)

exhibits similar behavior without the need
for a discriminative parameter as in [6].

where γ is used as a true trade-off parameter. The func-

tion f(·) introduces a non-linearity that allows a larger

range of values of γ to be considered before running

into instability issues. We choose f(γ) =
√
γ. As a re-

sult, the weight 1−√
γ of the less stable discriminative

term remains small for a larger range of γ values while

allowing the weight γ of the more stable reconstructive

term to drop more drastically.

Cost function (6) can be optimized via Newton itera-

tions, MOD [2], or KSVD [1]. We optimize by employ-

ing the MOD algorithm.

5. Experiments and Results

To validate our formulation, we perform pixel-wise

classification on the Graz02 bikes dataset and on the

UCF Sports action dataset.

Graz02 We select the first 300 images of the bike cat-

egory from the Graz02 dataset and use odd numbered

images for training and even numbered images for test-

ing. For each training image, dense SIFT features are

computed from overlapping patches of size 32×32with
a grid spacing of 12 pixels. For testing images the grid

spacing is set to 4.
We run 30 iterations of KSVD3 to train 2 separate

reconstructive dictionaries Df and Db for foreground

and background respectively using the training images

and the provided ground-truth shape masks. Each dic-

tionary has 256 items and the sparsity factor L is set

to 8. To demonstrate the improvement of our discrim-

inative approach over reconstructive approaches, these

3http://www.cs.technion.ac.il/∼ronrubin/software.html
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Figure 2. Stability comparison of SDDL
with the formulation of [6] with high (λ0 =
10) and low (λ0 = 1) initializations of their
discriminative parameter λ and recon-
structive parameter γ initialized to 100.
λ and γ were gradually updated as pro-
posed in [6]. All three optimizations were
continued until instability. For [6], learn-
ing with high discriminability leads to in-
stability quickly while not achieving high
accuracy while learning with low discrim-
inability takes longer to achieve high ac-
curacy. In contrast, SDDL achieves faster
learning and only requires a single tuning
parameter constrained between 0 and 1.

dictionaries are used as initial solution for the iterative

optimization of (6). For each SIFT feature in a test im-

age I , we compute the reconstruction errors Rf and

Rb under both dictionaries and classify as foreground

if Rf < τRb where the optimal value of 0 < τ ≤ 1 is

learned from the training data via cross-validation. Al-

ternatively, τ can be set adaptively for each test image

based on the first and second moments of the recon-

struction errors. Interpolation is carried out for missing

pixel values and the result is smoothed to obtain the fi-

nal pixel-wise classification confidence that is used in

all subsequent precision-recall curve calculations.

Figure 2 demonstrates that, compared to [6], our sta-

ble formulation (6) offers more control over the opti-

mization due to one less parameter to search over and

also due to constraining its only parameter to lie be-

tween 0 and 1. On the other hand, in [6], there is a lack

of clarity as regards to what range of values to consider

for the discriminative parameter λ as well as the recon-

structive parameter γ.

Figure 3 compares precision-recall curves on the

Graz02 bikes dataset using reconstructively learned dic-

tionaries via KSVD (dashed curves) and discrimina-

tively trained dictionaries via SDDL (solid curves).

Blue curves represent adaptive setting of the classifica-

tion parameter τ for each test image. Red curves rep-

resent τ optimally learned from the training set. It can
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Figure 3. Comparison of precision-recall
curves on the testing set of Graz02 bikes
dataset using reconstructively learned
dictionaries via KSVD (dashed curves)
and discriminatively trained dictionaries
via SDDL (solid curves). See text for de-
tails.

be observed that discriminative dictionaries yield better

classification performance. The benefit of learning an

optimal τ from the training set can also be observed.

The best achieved EER (Equal Error Rate where preci-

sion=recall) is 69.5%which is better than that achieved

by [9].

UCF Sports Similar to our setup for the Graz02

dataset, we learn foreground and background dictio-

naries on dense STIP descriptors4 [11] for the Diving

and Gym (beam) categories from the UCF Sports ac-

tions dataset [10]. We replicate the evaluation setup of

Yao et al. [12] who consider these two classes to be

difficult. We compare against their action localization

performance in Table 1. Considering that we neither

do tracking nor ground-truth based initialization for test

videos as in [12], our pixel classification based localiza-

tion is comparable. Figure 5 demonstrates localization

results on two selected frames.

6. Conclusion

We have introduced a new discriminative devia-

tion based formulation for dictionary learning that is

more stable than previous work while requiring only

one tuning parameter and handling the discrimina-

tion/reconstruction trade-off in a more principled man-

ner. Its applicability has been shown via state-of-the-art

results on two real-world datasets. Ongoing efforts aim

at incorporating context into the learning framework.

4http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-

2.0-linux.zip
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Figure 4. Row 1: Reconstructive dictionaries (KSVD) with Rf < Rb based pixel-wise classi-
fication shows a greater tendency to classify background as foreground while Row 2: Our
discriminatively learned dictionaries (SDDL) with Rf < τRb and optimal τ are able to achieve
much better pixel-wise classification.

Table 1. Localization on UCF Sports. Per-
centage of frames with localized bound-
ing boxes having intersection over union
with ground-truth > 1

2 . Consider ing that
we neither do tracking nor ground-truth
based initialization for test videos as in
[12], our pixel classification based local-
ization is comparable.

Gym (beam) Diving

[12] 62% 68%

SDDL 52% 55%

Figure 5. Dictionary based (green) and
ground-truth (red) localization on UCF
Sports. Left: Original frame. Middle: Un-
trained. Right: SDDL Trained.
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