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Calibration of the X-ray powder diffraction experimental
setup is a crucial step before data reduction and analy-
sis, and requires correctly extracting individual Debye-
Scherrer rings from the 2D XRPD image. This problem
is approached using a clustering-based machine learning
framework, thus interpreting each ring as a cluster. This
allows automatic identification of Debye-Scherrer rings
without human intervention and irrespective of detector
type and orientation. Various existing clustering tech-
niques are applied to XRPD images generated from both
orthogonal and non-orthogonal detectors and the results
are visually presented for images with varying inter-ring
distances, diffuse scatter and ring graininess. The accu-
racy of predicted clusters is quantitatively evaluated us-
ing an annotated gold standard and multiple cluster anal-
ysis criteria. These results demonstrate the superiority
of density-based clustering for the detection of Debye-
Scherrer rings. Moreover, the given algorithms impose no
prior restrictions on detector parameters such as sample-
to-detector distance, alignment of the center of diffraction
pattern or detector type and tilt, as opposed to existing
automatic detection approaches.

1 INTRODUCTION
Analysis of 2D X-ray powder diffraction (XRPD)

data is widely used for determining the crystal structure
of unknown materials and compounds. It has applica-
tions in geological sciences, pharmaceutical industry, bi-
ology, texture analysis, stress and strain analysis of mate-
rials and measurement of grain sizes and orientations of
unknown solids. X-ray diffraction from solid crystals is
used to determine both X-ray wavelengths when the crys-
tal structure is known, and crystal structure of unknown
solids when X-ray wavelength is known. A crystal struc-

Fig. 1. X-ray powder diffraction. [1]

ture consists of regularly repeating three-dimensional pat-
terns of atomic cells. The incidence of a collimated X-ray
beam on a poly-crystalline powdered substance produces
a number of scattering cones making concentric elliptical
patterns on a 2D detector surface mounted co-axially with
the beam (as seen in Fig. 1).

The diffraction patterns produced are in the form of
conic sections, also called Debye-Scherrer rings [3]. Fig.
2 illustrates some 2D XRPD images collected from dif-
ferent area detectors. Detector configurations that are
orthogonal to the beamline produce concentric ellipses
while hyperbolic patterns are also observed in case of
non-orthogonal detectors. Identifying these 2-D patterns
in XRPD data is an important pre-requisite of the data re-
duction step in phase identification [4, 5]. Furthermore,
an important pre-requisite of X-ray data analysis is cal-
ibration of the XRPD experimental setup. Detection of
Debye-Scherrer rings also facilitates the calibration pro-
cess thereby accurately identifying parameters such as



Fig. 2. XRPD images with circular, elliptical and hyperbolic Debye-Scherrer rings [2]

powder-to-detector distance, center of diffraction pattern,
and correctness of geometrical errors caused by detector’s
orientation or tilt.

The problem can be formulated as follows. For any
XRPD image Ipd, the task of automatically and accu-
rately extracting a set of Debye-Scherrer rings R requires
identifying the pixel regions corresponding to an individ-
ual ring as a first step. This paper aims at devising meth-
ods for automatic identification of these elliptical regions,
which is a crucial prerequisite of both the calibration of
XRPD setup and data analysis phase. This task becomes
challenging since the XRPD images obtained as a result
of the diffraction experiments are inherently noisy hav-
ing small inter-ring distances and spotty rings, sometimes
missing several connecting regions. Also, both elliptical
and hyperbolic patterns are observed depending on the
type of detector used.

Traditional approaches for the detection of Debye-
Scherrer rings are based on manual marking of elliptical
regions in images. This process has been automated to
some extent in numerous open-source software packages
designed for calibration and analysis of X-ray data such
as d2Dplot [6], Fit2D [7], Power3d [8] and pyFAI [9].
However, these data analysis tools are still dependant on
manual marking of points on rings before azimuthally in-
tegrating sections of ellipses in the data reduction step.
This process is both slow and error-prone. Some au-
tomatic ellipse detection techniques have been proposed

[10, 11, 12], but are rather restrictive in terms of choice
of detector’s tilt and parameters. Recently, an incremen-
tal ellipse detection algorithm (IED) has been proposed
[2] based on computer vision techniques, which automat-
ically detects Debye-Scherrer rings without any manual
marking. It uses region growing and ellipse fitting tech-
niques to identify elliptical regions in X-ray images. The
IED algorithm performs better than the existing detec-
tion techniques and can accurately detect Debye-Scherrer
rings in noiseless images. However, the accuracy of ring
detection decreases significantly for noisy images where
rings are spotty or unconnected and occur very close to
each other. For images generated by orthogonal detec-
tors, this problem is addressed by forcing the Debye-
Scherrer rings to belong to a family of ellipses with the
same major-to-minor axis ratio. Thus, when one ellipse
is correctly detected using IED, its major-to-minor axis
ratio is used to determine subsequent ellipses if any exist.
This approach is based on the fact that all concentric el-
lipses can be generated using a scaled version of any one
detected ellipse. However, the ellipse family constraint
based on major-to-minor axis ratio cannot be applied to
Debye-Scherrer rings generated by non-orthogonal detec-
tors, where the rings may take parabolic shapes.

This paper presents the application of clustering tech-
niques for the automatic detection of ellipses in XRPD
images. Clustering is widely utilized in pattern recogni-
tion tasks to improve the performance of industrial manu-



facturing processes[13, 14, 15]. A cluster-based interpre-
tation of XRPD data is presented where points belong-
ing to one elliptical region or ring are identified as one
cluster. Once the rings are identified, their parameters
can be obtained using any ellipse-fitting technique. It is
demonstrated through visual and quantitative results that
clustering-based approaches perform well for the iden-
tification of Debye-Scherrer rings. It is shown that ir-
respective of detector type and tilt, clustering methods
can detect multiple Debye-Scherrer rings in X-ray diffrac-
tion images generated from different area detectors. This
includes images containing elliptical as well as hyper-
bolic rings. It is also highlight that some clustering al-
gorithms are able to successfully detect all or most of
the Debye-Scherrer rings in noiseless images. For moder-
ately and very noisy images, these algorithms are able to
correctly detect the inner-most ring and a few outer rings.
Compared to previous detection approaches, the proposed
clustering-based solutions are not restrictive in terms of
center of diffraction pattern and sample-to-detector dis-
tance and works equally well for orthogonal and non-
orthogonal detectors. A thorough comparative analysis of
the performance of different clustering algorithms is also
presented in this regard. Moreover, it is argued that the re-
gions initially obtained by IED and subsequently grown
into ellipses are much higher in number as compared to
those identified by clustering, thus incurring more com-
putational overhead.

The main contributions of this research are as fol-
lows.

1. Interpretation of Debye-Scherrer rings as clusters
which allows their detection using clustering algo-
rithms.

2. Annotation of XRPD data with ground truth labels
for quantitative evaluation of various clustering algo-
rithms using standard cluster evaluation criteria.

3. Comparison and analysis of seven clustering meth-
ods for the ring detection problem in XRPD images
in the presence of varying inter-ring distances, dif-
fuse scattering and graininess.

4. Analysis that density-based and spectral clustering
algorithms yield better Debye-Scherrer rings.

5. Automatic estimation of number of rings in a diffrac-
tion pattern.

6. Visual comparison of regions identified by region
growing and data clustering.

This paper is organized as follows. The main cate-
gories of clustering algorithms are introduced in Section
2. This is followed by the results of different cluster-
ing algorithms and their limitations for detecting Debye-
Scherrer rings in Section 3. The accuracy of clusters de-

pends on how close they are to actual Debye-Scherrer
rings in the image. This is evaluated using multiple exter-
nal criteria and quantitative results are reported in Section
4. In Section 5, the role of various algorithmic constants
in determining accurate clusters is discussed. A discus-
sion on how such parameters can be determined automat-
ically from data is also presented in the same section.

2 DATA CLUSTERING
The goal of a clustering algorithm is to divide data

points into different partitions or clusters such that the
similarity of data points within a cluster is high and
that of data points belonging to different clusters is low.
The most commonly used similarity measures employ
Euclidean distance between pairs of data points, how-
ever, other similarity measures can also be used to cap-
ture the underlying structure of data and compute simi-
larities accordingly [16, 17, 18]. Given a dataset X =
{x1,x2, . . . ,xN} ∈ RN×D, the problem of cluster-
ing can be formulated as finding c disjoint partitions
{A}n1×D

1 , {A}n2×D
2 , . . . , {A}nc×D

c of S such that for
any xj ∈ Ak, xj /∈ Ak and

∑c
i ni = N . Vari-

ous clustering algorithms exist in this regard including
centroid-based, hierarchical, spatial density-based and
graph theory-based clustering [19]. Fig. 3 illustrates
some of these techniques. Centroid-based algorithms
such as k-means, are best suited to data having compact
groups with well-separated centers. It may not perform
well on data with intersecting groups or groups having
overlapping means (µi ≈ µj). When this happens, clus-
ter memberships can be determined using the distance
among data points instead of distance from some centroid
value. In the following sections some clustering tech-
niques that use this method of grouping points together
are discussed.

2.1 Hierarchical Clustering
Hierarchical clustering builds a tree of data points

starting either at the root or the leaf nodes. The for-
mer, called divisive hierarchical clustering, assigns all
data points to a single root cluster and recursively par-
titions it into most dissimilar smaller sub-groups. An ex-
ample algorithm is divisive analysis (DiAna) [17]. The
latter, called agglomerative hierarchical clustering, takes
a bottom-up approach considering each point as an indi-
vidual cluster, merging the similar groups together as the
algorithm progresses. Hierarchical algorithms use differ-
ent methods to measure the similarity (or dissimilarity) of
clusters to determine if they can be linked together.



Fig. 3. Types of clustering algorithms illustrated for data having two clusters. (a) Hierarchical clustering for the same data. Each
data point is an individual cluster and most similar clusters are iteratively merged to form bigger groups. (b) Spectral clustering using
graph min-cut approach. A similarity graph of data is constructed followed by dimensionality reduction where clusters become more
pronounced.(c) Density-based clustering where connected components of core points are formed into clusters.

Single linkage measures the distance between two clus-
ters as the distance between their closest pair of elements.

D(Ci, Cj) = min
xi∈Ci,xj∈Cj

d(xi, xj) (1)

Complete linkage measures the distance between two
clusters as the distance between their farthest pair of ele-
ments.

D(Ci, Cj) = max
xi∈Ci,xj∈Cj

d(xi, xj) (2)

Average linkage computes the distance between two
clusters as the average distance between all their ele-
ments.

D(Ci, Cj) =
1

|Ci||Cj |
∑

xi∈Ci

∑
xj∈Cj

d(xi, xj) (3)

Hierarchical clustering performs better than k-means for
data with complex structure. However, the accuracy de-
pends on the linkage method used. Also, in presence of
noise, the algorithm fails to correctly capture hierarchical
relationships in data.

2.2 Spectral Clustering
Spectral clustering provides an approximation of the

graph min-cut problem using the weighted undirected
proximity graph G of data. A variety of methods ex-
ist that capture the neighborhood information in this re-
spect, including k-nearest neighbors, mutual kNN, ϵ-
neighborhood, and fully connected graphs. A similarity
function such as the Gaussian kernel is used to calculate

the similarities between data points (edge weights in G)
and form the affinity matrix A of data. Gaussian kernel is
especially useful when calculating similarities in a fully
connected graph, as it captures the neighborhood infor-
mation with the help of scaling parameter σ (see Eq. 4).
It is important to emphasize that the structure of the affin-
ity matrix depends on the proximity graph and its values
depend on the similarity function. Data sets having well-
pronounced clusters tend to have a block diagonal affinity
matrix which represents higher intra-cluster similarities
than inter-cluster similarities [20].

aij = exp−
D(i,j)2

2σ2 (4)

where aij represents the similarity between points xi and
xj , and σ is the scaling coefficient.

Spectral clustering produces clusters using the eigen-
values and eigenvectors of the graph Laplacian which is
obtained from the A. Both un-normalized and normal-
ized variants of graph Laplacian are employed for this
purpose. Eq.5 shows how an un-normalized graph Lapla-
cian is computed from the similarity and degree matrix of
a graph.

L = D−A (5)

D is a diagonal matrix called the degree matrix where
dii =

∑
j aij .

Eq.6 [21] and Eq.7 [22] are used to compute the two
versions of the normalized graph Laplacian. Here Lrw

represents a random-walk normalized Laplacian where as
Lsym is symmetric normalized Laplacian.

Lrw = I−D−1A (6)



Fig. 4. Mapping D-dimensional data matrix (X) to c-
dimensional matrix (U) of eigenvectors.

Lsym = I−D−1/2AD−1/2 (7)

The Laplacian matrix obtained as a result is symmet-
ric and positive semi-definite [20]. Moreover, the eigen
decomposition of L yields real and non-negative eigen-
values (0 = λ1 ≤ λ2 ≤ . . . ≤ λn) and the eigenvectors
form an orthonormal basis. The eigenspace of Laplacian
forms a basis of indicator vectors that correspond to the
connected components of the graph G. This set of eigen-
vectors is denoted by V ∈ RN×N where N is the number
of data points. In the final step of the algorithm, c eigen-
vectors are selected from V to form U ∈ RN×c. The
rows of this matrix correspond to each data point where
a data point from RN×D is mapped to RN×c. K-means
is applied on the rows to obtain cluster memberships of
each data point (as seen in Fig. 4). Spectral clustering
performs considerably well on complex data sets where
k-means and hierarchical algorithms fail. However, it is
highly dependent on the similarity function and its pa-
rameters. Moreover, it is computationally intensive es-
pecially for large data sets, and not very robust to noisy
data. Many variant algorithms of spectral clustering ex-
ist [23, 24] using novel similarity functions to capture the
inherent patterns in data.

A spatial density-based approach to clustering robust
to noise in data sets is discussed in the following section.

2.3 Density-based Clustering
A density-based spatial clustering algorithm for

noisy data sets, abbreviated as DBSCAN, has been pro-
posed in [25]. The main idea is that the density of data
points within a cluster is higher than those outside it.
Also, noise has a lower density than actual data, there-
fore points that are far away from majority of points can
be labeled as outliers. DBSCAN works by building ϵ-
neighborhoods of spatially close data points in the Eu-
clidean space. A data point is called a core point if it has

more than some minimum number of points (minPts) in
its ϵ-ball radius. The connected component of each set of
core points forms a cluster. A non-core point is assigned
to the cluster corresponding to the closest core-point in
its ϵ-neighborhood. Points that are not assigned to any of
the clusters are marked as noise and removed (see Fig. 3
(c)). DBSCAN does not require prior knowledge of the
number of clusters in data as opposed to traditional clus-
tering algorithms. Instead, it grows neighborhoods based
on ϵ-distance, very similar to region growing in the IED
algorithm [2]. Moreover, it works well for noisy data sets
and can detect arbitrary shaped clusters in data. How-
ever, similar to other clustering algorithms, it is sensitive
to the choice of ϵ and minPts to correctly identify clus-
ters. Also, for very noisy data sets, DBSCAN can in-
advertently label and remove some data points as noise.
It may not produce correct results for data having vary-
ing densities of points. A generic approach to density-
based clustering using kernel density estimation is also
proposed in [26]. Moreover, a hierarchical density es-
timation based method HDBSCAN is presented in [27]
that builds a cluster tree and extracts the most significant
clusters from a complete density-based cluster hierarchy.
It only requires the minpts parameter from which it de-
termines the value of ϵ to generate clusters of core points.

The following section presents visual results of the
application of different clustering algorithms on XRPD
images.

3 VISUAL RESULTS
An XRPD image is first pre-processed and binarized

using the method described in [2] . This involves ap-
plying smoothing and morphological operations on the
image to reduce the graininess (spottiness) of the rings.
It enhances the connectivity of pixels along the elliptical
arcs and produces better clustering results. XRPD images
generated for calibrants from both orthogonal and non-
orthogonal detectors are used in the experiments. Three
of these namely Si12, LaB6 and Max1 belong to the fam-
ily of images generated using orthogonal detectors, while
the fourth (Tilted) is generated by a non-orthogonal detec-
tor 1. Orthogonal detectors generate rings that are almost
circular in nature where as non-orthogonal detectors pro-
duce patterns that may be elliptical but in some cases are
modeled best using parabolas.

X-ray data from the binarized image is read in a ma-
trix X ∈ NN×2, where N is the total number of points of
all Debye-Scherrer rings in the image. Each data point in

1All images are acquired from the European Synchroton Radia-
tion Facility (ESRF). https://www.esrf.eu/home/education/what-is-the-
esrf.html



Fig. 5. 2D XRPD image data from different detectors, and with varying degrees of noise. (a) Noiseless with some rings occurring
very close to each other, (b) moderately noisy, (c) highly noisy with a lot of spots around the rings, and (d) noiseless and well-separated
hyperbolic rings.

Table 1. Clustering parameters used in experiments given in
Sections 3 and 4.

Number
of clus-
ters (c)

Scaling
co-
efficient
(σ)

Minimum
points
(mPts)

Epsilon
(ϵ)

Max1 7 0.6 3 5

Si12 6 0.8 3 5

LaB6 14 0.3 2 3

Tilted 10 1.5 3 7

X is the row-column coordinate location corresponding
to a pixel belonging to a ring in the image. Table 1 lists
the parameters used for clustering algorithms for different
X-ray images. Here c is the number of clusters given as
input to the algorithm alongside the data matrix. This pa-
rameter is crucial in determining accurate results in all the
aforementioned clustering algorithms except DBSCAN.
The value of c is chosen according to the number of rings
identified from the ground truth of each image. Meth-
ods to automatically determine this value are discussed in
Section 5. In addition, σ represents the scaling parame-
ter used in Gaussian function for constructing the affinity
matrix. Global σ is chosen according to the density of
data and how close or far apart the rings are from each
other. Two parameters namely mPts and ϵ are specific to
DBSCAN and represent the minimum number of points
required in an ϵ-ball radius of a point to be considered as
a core point.

Figs. 6 presents the clustering results for the XRPD
images corresponding to hierarchical clustering. Here HC
refers to hierarchical agglomerative clustering with differ-

ent linkage methods. Sng stands for single linkage, Comp
for complete linkage, and Avg for average linkage as de-
fined in Eqs. 1, 2 and 3. Diana refers to the divisive hi-
erarchical clustering algorithm that works in a top down
manner. Fig. 7 presents the results of different variants of
spectral clustering. SC refers to un-normalized spectral
clustering using L where as SC-Shi using Lrw and SC-
NJW using Lsym are its normalized variants, as defined
in Eqs. 5, 6 and 7 respectively. Moreover, SC-ST refers to
self-tuning spectral clustering [23] that proposes using k-
nearest neighbor distance to locally determine the values
of scaling co-efficient σ to compute the affinity matrix as
given in Eq. 4. SC-LD refers to local density adaptive
spectral clustering [24]. This technique scales the global
value of sigma by the common nearest neighbors of each
pair of data points and subsequently computes the affinity
between them using the Gaussian kernel. Finally, Fig. 8
presents the results of two variants of density-based clus-
tering namely DBSCAN and HDBSCAN [27].

The results of hierarchical agglomerative clustering
are demonstrated with various linkage methods. It can be
seen that complete and average linkage (HC-Comp and
HC-Avg) produce very similar clusters to k-means. They
fail to identify any Debye-Scherrer rings even for noise-
less X-ray images. Since average linkage takes the mean
of distances between all points of two clusters, it con-
verges as k-means. Complete linkage fails because the
nature of Debye-Scherrer rings is such that based on max-
imum distance, regions of the same ring are considered
further apart than the regions across two different rings.
This results in points of adjacent rings being grouped into
a single cluster, as opposed to the points lying on the cir-
cumference of the same ring. In contrast, the single link-
age method (HC-Sng) is able to detect some individual
rings in noiseless images (Max1 and Tilted). Single link-
age takes the distance between two clusters as the min-



Fig. 6. Results of hierarchical clustering algorithms for XRPD images from both orthogonal (cols 1-3) and non-orthogonal (col 4) de-
tectors. Each color in the XRPD image represents one cluster. The results show that among all agglomerative hierarchical algorithms
only HC-Sng is able to detect some rings in noiseless images (cols 1 and 4). Also, divisive hierarchical clustering is not able to detect
any ring accurately.

imum of distances between all points, therefore, regions
of the same ring appear closer to each other and are com-
bined in a cluster. The algorithm keeps merging neigh-
boring regions on a ring until there are no more points
left. However, single linkage combines some rings to-
gether that occur very close to each other even in noise-
less image (Max1). Linkage methods such as single and
complete that make use of a single pair of points to make a
merging decision are always susceptible to noise. There-
fore, single linkage performs poorly when images have
moderate to high noise (Si12 and LaB6), grouping all the
rings together. It can be observed that divisive hierarchi-
cal clustering Diana also produces results similar to HC-

Comp since it uses highest average dissimilarity between
points in a group to determine how to split a cluster into
multiple sub-clusters.

The clusters identified by spectral clustering are con-
siderably better than the hierarchical approaches. Un-
normalized spectral clustering (SC) generates similar
clusters as the single linkage hierarchical method. How-
ever, the algorithm performs better when normalized
Laplacian Lrw is used (SC-Shi). It identifies the inner
most ring correctly in Max1, but clusters narrowly spaced
rings together in the same image. For noisy images Si12
and LaB6, the algorithm is unable to give accurate re-
sults, clustering all rings together in a single cluster. Nor-



Fig. 7. Results of various spectral clustering algorithms for XRPD images from both orthogonal (cols 1-3) and non-orthogonal (col
4) detectors. Each color in the XRPD image represents one cluster. Most spectral algorithms correctly identify some or all rings in
noiseless images(cols 1 and 4), however their performance decreases as the spottiness of the rings increases (cols 2 and 3). For the
most noisy image (col 3), spectral clustering is only able to detect the inner most ring at best.

malized spectral clustering produces the most accurate
clusters when Lsym is used (SC-NJW). It detects more
rings in Max1 than SC-Shi, where as the result in Tilted
is also better producing distinct clusters for each ring. It
can be observed that this method identifies more and con-
siderably better rings for noisy images as compared to the

other two spectral clustering algorithms (SC and SC-Shi).
The results in Si12 and LaB6 demonstrate that at least
one ring is correctly identified. Particularly in LaB6, the
clusters produced are mostly elliptical in nature as com-
pared to hierarchical methods which either fail to iden-
tify any elliptical structure at all, or cluster all points into



Fig. 8. Results of density-based clustering algorithms for XRPD images from both orthogonal (cols 1-3) and non-orthogonal (col 4)
detectors. Each color in the XRPD image represents one cluster. Both algorithms produce nearly similar results, correctly identifying
some or all rings in noiseless images. Both algorithms perform well for moderately noisy images (col 2), but are only able to detect
one ring in the high noise XRPD image (col 3).

Fig. 9. Role of parameters minpts and ϵ in DBSCAN for high noise XRPD image LaB6. The points from the outer rings are
gradually removed as outliers by the algorithm when minPts is increased from 1 to 7 for ϵ = 1.5. Notice how the rings tend to get
clustered together when ϵ is increased. Also, for very small ϵ (0.5) the algorithm results in empty clusters as minPts is increased.

one group. Spectral clustering methods SC-ST and SC-
LD which define a modified similarity function and sub-
sequently compute Lsym, produce similar results as SC-
NJW only for Tilted. For all the other images, SC-ST fails
to identify any elliptical structure in data and produces re-
sults similar to the hierarchical algorithms. SC-LD, how-

ever, obtains clusters comparable to SC-NJW and iden-
tifies a few inner-most rings correctly. This shows that
using a modified similarity function does not necessarily
capture the underlying patterns in data more effectively
than the baseline normalized algorithm SC-NJW.

Finally, the density-based method DBSCAN pro-



duces clusters comparable in accuracy to the best per-
forming normalized spectral clustering algorithm (SC-
NJW). It does not require any prior information on the
number of clusters, but the choice of minPts and ϵ af-
fect the clustering results. DBSCAN works well both for
noiseless and moderately noisy images. For example in
Max1, Si12 and Tilted at least two rings per image were
detected correctly. Since DBSCAN is robust to noise, it
is able to detect multiple rings in Si12. However, it is not
able to correctly identify rings in the high noise XRPD
image (LaB6). This happens because rings occurs very
close to each other in noisy images which makes it dif-
ficult to choose an ϵ radius that yields clusters which are
neither too small nor too large. Increasing the value of
ϵ tends to include points of adjacent rings in one cluster,
where as decreasing it can split a ring in multiple parts
thus forming more than one clusters of it. The results
produced by HDBSCAN are comparable to DBSCAN for
noiseless to moderately noisy images. However, it fails to
identify any rings accurately for very noisy images.

It can be observed in Fig. 9 that noisy images have
varying densities of points in rings, where the inner most
rings have a higher spatial density and the outer rings
have more scattered points with a lower density. Since
DBSCAN is designed to remove outliers in data, it starts
labeling and removing data points as noise in high noise
XRPD images if appropriate values of ϵ and minPts are
not chosen. As the value of ϵ is increased all the in-
ner rings get clustered together. Similarly, increasing the
value of minpts results in less data points being qualified
as core points and therefore being removed as noise. This
behavior is observed for all values of ϵ. Table 2 presents
the quantitative results corresponding to Fig. 9 for differ-
ent parameters values of minpts and ϵ.

The visual results of clustering demonstrate that nor-
malized spectral clustering and DBSCAN detect better
Debye-Scherrer rings as compared to agglomerative clus-
tering. Both normalized spectral clustering and DBSCAN
perform equally well for noiseless and moderately noisy
images. For highly noisy images, both algorithms iden-
tify the inner most ring accurately. However, DBSCAN
does not require the knowledge of c in advance, which is a
pre-requisite for spectral algorithms. Also, it is computa-
tionally much faster than spectral clustering which takes
O(N3) time during the eigen decomposition step which
may become a performance bottleneck for very large data
sets, such as the XRPD images. The worst case run-
ning time of DBSCAN is O(N2) and may be reduced to
O(N logN) with optimized implementations.This makes
DBSCAN the algorithm of choice for detecting Debye-
Scherrer rings from XRPD images. Empirical compar-
ison of running times of the two algorithms for different

Fig. 10. Plot of average running times in seconds of DBSCAN
and SC-NJW for different XRPD images. It can be seen that DB-
SCAN is computationally much more efficient than SC-NJW for
all images having varying number of data points.

images with varying number of data points is presented in
Fig. 10. The two different bars represent the average time
in seconds of the two algorithms for 50 runs. DBSCAN
is approximately 59 times more efficient as compared to
spectral clustering on average.

3.1 Effects of removing noise
This section explores how clustering behaves when

XRPD images are subject to noise removal techniques to
get cleaner rings. The noisy spots around rings can be
removed by finding and filtering connected components
in the image based on their sizes, where the threshold of
size is given by percentiles. So, all connected components
below a given size percentile are removed from the image.
Fig. 11 shows how the results of HC-Sng and SC improve
after filtering noise from Si12, where the algorithm starts
to successfully detect the rings in the image as noise is
progressively removed.

Fig. 11 also illustrates the behavior of better-
performing clustering algorithms such as SC-NJW and
DBSCAN after removing noisy spots. It can be seen that
the denoising method employed also removes the signal
along with noise. This means that the components that
act as links between different regions of a ring are fil-
tered when the size threshold is increased. This leads to
producing disconnected regions in outer rings that relied
on such connected components to be clustered together.
Hence, it can be observed that the rings identified by
both SC-NJW and DBSCAN deteriorate in quality above



Fig. 11. Performance of hierarchical clustering with single linkage on Si12 after reducing noisy spots in the image. The noisy spots
around rings are removed by finding and filtering connected components in the image based on their sizes, where the threshold of size
is given by percentiles. The results show how the algorithm progresses from identifying no rings in the first column when the noise
threshold is set at 50th percentile, to identifying the inner most ring and some segments of outer rings for higher percentiles.

the 50th percentile value. Spectral clustering depends on
strong intra-cluster similarities between points to achieve
an optimal cut on the graph. These similarities decrease
as a result of removing intermediate points. Therefore
spectral clustering fails to capture the neighborhood in-
formation correctly and breaks a ring into multiple clus-
ters. Similarly, DBSCAN identifies groups of core points
and builds clusters around these. The algorithm creates
clusters of isolated components when linking neighbor-
hood points are removed. Therefore, it results in iden-
tifying multiple disconnected clusters in each ring. This
phenomenon is not observed for the inner most ring for
both the algorithms. This is mainly because no compo-

nents have been removed as noise from this ring.

4 QUANTITATIVE RESULTS
The accuracy of clusters identified by a clustering al-

gorithm need to be evaluated using multiple criteria [28].
External evaluation requires creating ground truth clus-
ter labels or a gold standard, to which predicted clusters
labels are compared. This external benchmark is usually
created by human experts by labeling each data point with
a true cluster label. In internal evaluation the predicted
clustering is checked against a given criteria, for exam-
ple how close or separated are the data points in different



Fig. 12. Manually marked ground truth Debye-Scherrer rings. (a) The original binarized XRPD image having r = 7 rings. (b) Each
ring is saved as a separate image and its data points are assigned a unique ground truth label. (c) Marked rings combined in an image
which is input to the clustering algorithms.

Table 2. Quantitative scores for DBSCAN with different parameter values corresponding to Fig. 9

ϵ

minpts 1 3 5 7

NMI RI ARI NMI RI ARI NMI RI ARI NMI RI ARI

0.5 0.53 0.91 -5.2e-6 0.007 0.09 3.5e-5 0 0.08 0 0 0.08 0

1.5 0.51 0.8 0.13 0.5 0.8 0.14 0.48 0.78 0.17 0.49 0.72 0.18

3.5 0.25 0.34 0.02 0.26 0.34 0.02 0.31 0.39 0.03 0.35 0.5 0.03

clusters.

4.1 External Evaluation Criteria
For quantitative evaluation using external criteria, the

data points belonging to individual rings in a binarized
XRPD image are manually marked with ground truth la-
bels. Fig. 12 shows this marking process. Each ring is
manually isolated from the rest and stored as a separate
binary image. Data points from these separate binary im-
ages are read in a vector and points belonging to each ring
are assigned a unique label (1, 2, 3, ..., r), where r is the
total number of rings in the image. All images are of size
200 × 200 and the results are reported as mean values of
50 runs of each algorithm on each image. The cluster-
ing accuracy of the algorithms is evaluated using multiple
external criteria.

Normalized mutual information is used to estimate
the quality of clustering in an information theoretic man-

ner [29]. NMI takes values in [0, 1], where higher values
of NMI show good clustering results, with a value of 1
indicating that the two clusterings (ground truth and pre-
dicted) are identical. Since it is normalized, the values of
NMI for different clustering results (with varying num-
ber of clusters) can be compared. Table 3 gives the NMI
values of different clustering algorithms when applied to
XRPD images.

In addition to NMI, Rand index (RI) [30] can be used
to measure cluster quality. Theoretically, RI lies between
0 and 1, with 1 indicating a perfect match between ground
truth C and predicted clustering Ĉ. However, in practice
RI of even a pair of random partitions is centered around
values close to 1, especially as the numbers of clusters
(c) becomes large. This is because RI does not take into
account chance cluster assignments. Instead, it rewards
mistakes made in the clustering, thereby increasing the
numerator value and therefore the overall RI score. Ta-
ble 4 provides the RI values for different clustering algo-
rithms.



Table 3. NMI score for clustering algorithms for XRPD images corresponding to Figs. 6, 7 and 8

Max1 Si12 LaB6 Tilted

HC-Comp 0.03 0.06 0.20 0.33

HC-Single 0.67 0.05 0.03 0.97

HC-Avg 0.03 0.05 0.26 0.40

Diana 0.14 0.03 0.23 0.35

SC 0.67±3.6e-16 0.27±0.2120 0.06±0.0139 0.97±0.0034

SC-Shi 0.67±3.5e-16 0.50±0.0862 0.46±0.0420 0.97±0.0069

SC-NJW 0.70±0.0167 0.68±0.0226 0.44± 0.0083 0.99±0.110

SC-ST 0.68±0.022 0.34±0.016 0.37± 0.078 0.97±0.011

SC-LD 0.71±0.022 0.67±0.023 0.43±0.011 0.97±0.011

DBSCAN 0.83 0.65 0.43 0.99

HDBSCAN 0.75 0.65 0.43 0.98

Table 4. RI score for clustering algorithms for XRPD images corresponding to Figs. 6, 7 and 8

Max1 Si12 LaB6 Tilted

HC-Comp 0.73 0.69 0.81 0.84

HC-Single 0.77 0.23 0.12 0.98

HC-Avg 0.74 0.70 0.82 0.84

Diana 0.72 0.69 0.79 0.82

SC 0.77±1.1e-15 0.41±0.1956 0.15 ±0.0098 0.9853±0.0023

SC-Shi 0.77±1.1e-15 0.62±0.1207 0.68±0.0846 0.98±0.0082

SC-NJW 0.88±0.0107 0.83±0.0201 0.84±0.0023 0.99±0.0059

SC-ST 0.85±0.022 0.74±0.0182 0.82± 0.003 0.98±0.002

SC-LD 0.88±0.018 0.83±0.008 0.83±0.003 0.98±0.0081

DBSCAN 0.92 0.83 0.69 0.99

HDBSCAN 0.91 0.85 0.67 0.99

Unlike RI, the adjusted Rand index (ARI) [31] takes
into account chance cluster assignments. The ARI is typ-
ically lower than RI and has an upper bound of 1 for a
perfect match and a value of 0 represents random agree-
ment of the two clusterings. Occasionally, ARI can also
assume negative values close to zero, indicating that the
RI of two clusterings is less than the expected RI. This
means that the two clusterings are completely different
and their similarity is less than the expected similarity as
calculated using random clustering. Table 5 provides the

ARI values for different clustering algorithms.

From the numerical scores it can be seen that normal-
ized spectral clustering with Lsym [22] yields the highest
NMI, RI and ARI values in all results for noisy images.
For noiseless XRPD images also, it gives higher values as
compared to un-normalized and normalized spectral clus-
tering using L and Lrw respectively. For noiseless images
Max1 and Tilted, the NMI, RI and ARI scores of DB-
SCAN are higher than SC-NJW. DBSCAN gives scores
as good as SC-NJW for moderately noisy Si12. How-



Table 5. ARI score for clustering algorithms for XRPD images corresponding to Figs. 6, 7 and 8

Max1 Si12 LaB6 Tilted

HC-Comp 0.01 0.02 0.04 0.13

HC-Single 0.42 -0.01 -0.0014 0.92

HC-Avg 0.01 0.03 0.08 0.17

Diana 0.04 0.04 0.06 0.15

SC 0.42±4.4e-16 0.12±.1599 -0.004±0.001 0.93±0.011

SC-Shi 0.42±4.5e-16 0.28±0.121 0.19±0.0642 0.91±0.0357

SC-NJW 0.61±0.0254 0.54±0.0389 0.17±0.0083 0.98±0.0289

SC-ST 0.65±0.024 0.17±0.018 0.13± 0.078 0.94±0.002

SC-LD 0.60±0.019 0.54±0.028 0.17±0.0021 0.95±0.003

DBSCAN 0.73 0.52 0.13 0.9955

HDBSCAN 0.66 0.56 0.06 0.99

ever, the scores for LaB6 tend to be slightly lower than
that of normalized spectral clustering algorithm SC-NJW.
This supports the visual results given in Figs. 7 and 8
where DBSCAN detects only one ring for LaB6. Since
XRPD images are inherently noisy, therefore, clustering
techniques that are robust to noise may effectively iden-
tify Debye-Scherrer rings thereby preventing errors in the
data reduction phase. It is also observed that the RI scores
are relatively higher than the NMI and ARI values for the
same algorithms. Consequently, the RI for agglomerative
clustering with complete and average linkages are consid-
erably higher as compared to their NMI and ARI scores.
The NMI and ARI values for these algorithms are consis-
tent with the visual results as these methods fail to detect
any elliptical patterns correctly. This reiterates the previ-
ous discussion that higher RI values are observed due to
chance cluster assignments even when the two clusterings
(predicted and ground truth labels in this case) have very
less overlap. This becomes most prominent in case of
noisy image LaB6 which has ARI values centered around
0 for agglomerative methods but has RI values as high
as 0.8. It can be concluded from the quantitative results
that spectral and density-based clustering perform well on
complex and noisy XRPD data, detecting either all or at
least a few inner most Debye-Scherrer rings. However,
the eigen decomposition step in spectral algorithms can
become computationally intensive for large data sets,thus
taking more time than the density-based clustering meth-
ods, as previously discussed in Section 3.

5 CHOICE OF CLUSTERING PARAMETERS

Clustering results are sensitive to the choice of pa-
rameters. Different sets of parameters are required by
different clustering algorithms to produce clusters that are
representative of the intrinsic structure of data. The most
important of these is the number of clusters c needed
by most algorithms and mandatory for producing cor-
rect clustering results. It is especially true in the case of
noisy XRPD images where sections of separate rings may
get assigned to the same cluster for a certain value of c.
Changing the value of c can produce different results for
the same data which can lead to the detection of different
rings in the same image. This phenomenon can further
result in inaccuracies during the calibration and data re-
duction steps. It can be seen in Fig. 13 that for the given
image, c = 12 and σ = 1.8 also produce the most num-
ber of Debye-Scherrer rings, despite the number of clus-
ters being different from the actual rings identified in the
ground truth for this image (i.e., c = 7). Finding c in clus-
tering algorithms is a non-trivial problem and highly data-
dependant. However, some heuristics can be employed to
estimate c from data and are discussed in Section 5.1.

In addition to c, the scaling co-efficient σ used in the
Gaussian similarity function plays a crucial role in how
accurately spectral clustering identifies good clusters. It
controls how fast the affinity between two points de-
creases as their Euclidean distance increases [22]. Clus-
tering results are highly sensitive to its value and it is ob-
served that the same data may produce different clusters
for slightly different σ. Each value of σ generates a dif-



Fig. 13. Normalized spectral clustering results for varying values of parameters c and σ. (Row-wise) Each value of σ generates a
different affinity matrix, thus producing different clusters for the same value of c. (Column-wise) The value of c controls how many
clusters are identified in the image.

ferent affinity matrix, thus producing different clusters for
the same value of c. Fig. 13 shows that some values of
σ (0.6) yield good clustering results for different varia-
tions of c. However, for other values (1.0 - 1.8), clustering
results vary when c is changed, with over-estimated num-
ber of clusters giving better results as compared to ground
truth value. Thus, even if a good estimate for the number
of clusters is found, the results are heavily dependant on
choosing a good value of σ (see row 2 in Fig. 13). Similar
to c, there are no theoretical results on how to find the op-
timal sigma and is dependent on the structure and noise in
data. Ng et al. suggest choosing the best value of sigma
that produces c tight clusters of data through parameter
tuning [22].

5.1 Estimating Number of Clusters
The accuracy of most clustering techniques (with the

exception of DBSCAN and agglomerative clustering) de-
pends on prior knowledge of the number of clusters in
data. However, real data sets are not supplemented with
this information beforehand. The automatic estimation of
the number of clusters during clustering is a non-trivial
task and greatly depends on the type of data. This section
discusses some heuristics that can be used to approximate
the number of clusters c from data, specifically for spec-
tral clustering techniques.

Eigengap One method to estimate c in spectral cluster-
ing algorithms is to use the spectral or eigen gap heuris-
tic as proposed in [20]. The idea is to find the first



largest jump in eigenvalues of the graph Laplacian of data,
starting with the largest eigenvalue λn corresponding the
largest eigenvectors (for Lsym). The eigengap can be
found as |λi+1 − λi|. The values of ce as determined
using the eigengap heuristic are given in Table 6. Nor-
malized graph Laplacian Lsym is used to determine num-
ber of clusters for different XRPD images. It does not
produce the exact number of clusters as identified in the
ground truth. However, for images with well pronounced
clusters and minimal noise, the estimated number of clus-
ters yield a few rings correctly. In contrast, for XRPD
data containing noise and non-uniformly spaced rings, the
number of clusters ce estimated by the eigengap heuristic
has overestimated values.

Multiplicity of eigenvalues The graph Laplacian of
data exhibits certain properties as discussed in Section
2.2. The eigen decomposition of L yields one eigenvector
corresponding to eigenvalue 0 if there is a path between
all vertices of the graph, thus forming one connected com-
ponent. This will lead to generating only one cluster en-
compassing all data points.

Let us assume that the data has c > 1 clusters. Let
us also assume that the data points belonging to each
cluster are ordered one after the other such that C1 =
{x1, . . . ,xn1}, C2 = {xn1+1, . . . ,xn1+n2}, . . . , Cc =
{x∑c−1

j=1 nj+1, . . .x
∑c−1

j=1 nj+nc
}, where ni is the cardinal-

ity of cluster Ci . The graph of this data has multiple con-
nected components and the graph Laplacian takes a block
diagonal form,

L =


L1 0 . . . 0
0 L2 . . . 0
...

...
. . .

...
0 0 . . . Lc

 (13)

where Lj is the graph Laplacian corresponding to the jth

connected component of the graph. The eigenvalues of L
are a union of the eigenvalues of all L1,L2, . . . ,Lc. This
also implies that eigenvalue 0 has c occurrences, one for
each Lj . Thus, the multiplicity of eigenvalue 0 is equal
to the number of connected components of the graph and
consequently the number of clusters present in data. This
is true even when the data is not ordered according to
clusters, which is generally the case. For normalized
graph Laplacian Lsym, the multiplicity of eigenvalue 1
serves the same purpose, because the largest eigenvectors
of the Laplacian are selected. This multiplicity value can
be used to estimate the number of clusters for spectral
clustering algorithms.

Table 6. Estimated number of clusters using eigengap and mul-
tiplicity heuristics.

Max1 Si12 LaB6 Tilted

Ground truth (cg) 7 6 14 10

Eigengap (ce) 38 44 4 11

Multiplicity (cm) 31 43 4 11

The values of cm determined by multiplicity of
eigenvalue 1 using symmetric normalized graph Lapla-
cian Lsym for different XRPD images are given in Table
6. It can be seen that for noiseless images having well-
separated rings (Tilted), this value matches the number
of Debye-Scherrer rings as identified manually in ground
truth. However, for images where either rings are spotty
or very close to each other (Max1, Si12 and LaB6), the es-
timated number of clusters cm using multiplicity heuristic
is greater than the ground truth estimation cg .

Fig. 14 shows eigenvalue plots of different X-ray im-
ages. It can be seen that for noisy images both multiplic-
ity and spectral gap heuristics yield more clusters than the
ground truth estimation.

The results produced by spectral clustering using the
above heuristics are given in Fig. 15. It shows three dif-
ferent sets of results for number of clusters estimated via
ground truth, multiplicity and eigengap denoted as cg , cm
and ce respectively. The values of these parameters are
taken from Table 6. The clusters are ranked in descending
order with respect to their cardinality and colors are as-
signed based on the rank, as can be seen in the histogram
corresponding to each result. It can be seen from Table
6 and Fig. 15, both eigengap and multiplicity heuristics
over estimate the number of clusters. However, a pat-
tern similar to the histograms generated from clustering
results using cg can be observed in the histograms for
results using ce and cm. The inner most rings are cor-
rectly identified in all three sets of images. Thus it can be
concluded that even with overestimated number of clus-
ters, the main clusters present in results using cg also ex-
ist in the results for values estimated via eigengap and
multiplicity, where some points are assigned to smaller
clusters. Tables 7 and 8 present the quantitative NMI,
RI and ARI values corresponding to number of clusters
estimated using the eigengap and multiplicity heuristics
respectively. It can be seen that the despite the overesti-
mation of ce and cm, the numeric scores corresponding to
these heuristics coincide with those obtained when using
the ground truth values of c as given in Tables 3, 4 and 5.

It can also be observed from Fig. 15 that over es-



Fig. 14. Eigenvalue plot of different XRPD images. (Top) X-ray image. (Bottom) Plot of the largest forty five eigenvalues
λn−49, . . . , λn of Lsym corresponding to each image. It can be seen that for noisy images both multiplicity and eigengap heuristics
do not yield correct number of clusters.

timating number of clusters can actually benefit the ac-
curate detection of Debye-Scherrer rings. All clustering
methods try assigning each point to some cluster, thereby
assigning noise to at least one cluster. This leads to clus-
tering noise with rings, thus corrupting at least one (or
more) Debye-Scherrer rings. The phenomenon can be
seen in Fig. 16 for the moderately noisy image Si12. Fig
16 shows that while overestimation of c does not seem to

be a good option, but in the presence of noise, it might
actually be beneficial since noise gets assigned to a sepa-
rate cluster instead of being grouped with some legitimate
clusters.

6 CONCLUSIONS
This paper presents the application and analysis of

clustering algorithms on XRPD images for the automatic



Table 7. NMI, RI and ARI scores for SC-NJW using the estimated number of clusters ce via eigengap

Max1 Si12 LaB6 Tilted

NMI 0.76±0.001 0.64±0.0003 0.39±0.03 0.99±1.2e-16

RI 0.89±0.0003 0.83±7.2e-5 0.71±0.02 0.99±1.2e-16

ARI 0.61±0.002 0.52±0.0002 0.15±0.03 0.99

Table 8. NMI, RI and ARI scores for SC-NJW using the estimated number of clusters cm via multiplicity

Max1 Si12 LaB6 Tilted

NMI 0.80±0.0016 0.64±0.0003 0.39±0.03 0.99±1.2e-16

RI 0.92±0.0004 0.83±1.5e-5 0.71±0.02 0.99±1.2e-16

ARI 0.70±0.0017 0.52±5.3e-5 0.15±0.03 0.99

detection of Debye-Scherrer rings. The state-of-the-art
solutions are mostly semi-automatic, whereas the few au-
tomatic approaches are highly dependent on the area de-
tector’s type and tilt. It provides a cluster-based interpre-
tation of Debye-Scherrer rings and demonstrates visual
and quantitative results of agglomerative, spectral, and
density-based clustering algorithms on low to high noise
XRPD images. The given approaches offer two bene-
fits over traditional ring detection techniques: (i) clus-
tering algorithms are not restrictive in terms of (or de-
pendant on sample-to-detector distance and alignment of
ellipses within the image, and (ii) they perform well for
data generated from both orthogonal and non-orthogonal
detectors. Experimental results prove that both spectral
and density-based clustering are most effective in detect-
ing Debye-Scherrer rings in noisy as well as noiseless
XRPD images. Among the two, the density-based algo-
rithms are computationally much more efficient as com-
pared to spectral clustering and yield 59 times better run-
ning times. These also do not require a priori informa-
tion on the number of clusters which make density-based
algorithms the best choice for detecting Debye-Scherrer
rings. It can be concluded from this research that spectral
and density-based clustering generate encouraging results
for the detection of Debye-Scherrer rings. These can be
combined with traditional detection methods such as IED,
in place of region growing to improve both the rings de-
tection accuracy and time.
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