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Abstract Compared to facial expression recognition, ex-
pression synthesis requires a very high-dimensional map-
ping. This problem exacerbates with increasing image sizes
and limits existing expression synthesis approaches to rela-
tively small images. We observe that facial expressions often
constitute sparsely distributed and locally correlated changes
from one expression to another. By exploiting this observa-
tion, the number of parameters in an expression synthesis
model can be significantly reduced. Therefore, we propose
a constrained version of ridge regression that exploits the
local and sparse structure of facial expressions. We consider
this model as masked regression for learning local recep-
tive fields. In contrast to the existing approaches, our pro-
posed model can be efficiently trained on larger image sizes.
Experiments using three publicly available datasets demon-
strate that our model is significantly better than `0, `1 and
`2-regression, SVD based approaches, and kernelized re-
gression in terms of mean-squared-error, visual quality as
well as computational and spatial complexities. The reduc-
tion in the number of parameters allows our method to gen-
eralize better even after training on smaller datasets. The
proposed algorithm is also compared with state-of-the-art
GANs including Pix2Pix, CycleGAN, StarGAN and GANi-
mation. These GANs produce photo-realistic results as long
as the testing and the training distributions are similar. In
contrast, our results demonstrate significant generalization
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of the proposed algorithm over out-of-dataset human pho-
tographs, pencil sketches and even animal faces.
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1 Introduction

Affective human computer interaction requires both recog-
nition as well as synthesis of different facial expressions and
emotional states. Facial Expression Synthesis (FES) refers
to the process of automatically changing the expression of
an input face image to another desired expression (Wang
et al 2003; Susskind et al 2008). Facial expressions are non-
verbal visual cues which supplement or reinforce the mean-
ing of spoken words. Therefore, facial expressions are a cen-
tral element of visual communication for human and non-
human characters (Bermano et al 2014). Realistic FES is
important because of its applications in animation of char-
acters in video games and movies (Pighin and Lewis 2006;
Rizzo et al 2004) and avatar-based human-computer inter-
action (Saragih et al 2011). It is also important in security
and surveillance applications for the purpose of identify-
ing persons across varying facial expressions (Elaiwat et al
2016) and can be useful in longitudinal face modelling as
well (Nhan Duong et al 2016).

A simple approach for generating expressions is by lin-
ear combinations of basis shapes each controlled by a scalar
weight (Belhumeur et al 1997; Blanz et al 1999). These lin-
ear weights may be considered as facial model parameters.
Another face model parameterization is to simply represent
a face by its vertices, splines and polygons (Patel and Zaveri
2010). However, this representation has significantly more
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Fig. 1 Comparison of happy expressions synthesized by the proposed algorithm and different GANs. Training of the proposed method was
performed on photographs of real human faces only. Columns 1-4: Hand-drawn, gray-scale pencil sketches. Columns 5-9: Colored animal faces.
These results demonstrate the strength of the proposed algorithm in learning essential attributes of happy expressions from real human face
photographs and generalizing to images coming from significantly different distributions. Four state-of-the-art GANs found it very challenging to
induce expressions in pencil sketches and for the case of animal faces, no satisfactory expression was induced.

degrees of freedom than an actual facial expression. Some
facial animation systems use the Facial Action Coding Sys-
tem (FACS) (Ekman et al 2013) to estimate facial models
from motion capture data (Havaldar 2006). However, such
methods require motion capture data along with extensive
calibration and data cleansing. This limits their applicabil-
ity in most cases where only face images and their expres-
sion labels are available. Most existing approaches to FES
involve separating the problem into two parts, a geometry
adaptation step based on a 3D mesh or facial landmarks and
then an appearance adaptation step based on texture. In con-
trast to these techniques, we present a landmark-free FES
method which only requires aligned face images. That is,

Table 1 Comparison of different architectures in terms of Model Size
(# of parameters) and Average Execution Time (milliseconds) for im-
ages of size 128× 128.

Proposed Pix2Pix CycleGAN StarGAN GANimation

Size (×104) 1.68 4100 780 850 850

Time (msec) 2.70 320 710 580 507

landmarks are used for alignment but not for any subsequent
expression synthesis, mapping or warping.

FES has recently experienced a resurgence due to the
introduction of Generative Adversarial Networks (GANs)
(Goodfellow et al 2014; Mirza and Osindero 2014). GANs
have enabled a new level of photo-realism by encouraging
the generated images to be close to the manifolds of the
real images instead of being close to the conditional mean,
which may not be photo-realistic. GANs have been shown to
be effective in a wide variety of applications such as image
editing (Zhu et al 2016), deblurring (Kupyn et al 2018) and
super-resolution (Ledig et al 2017). They have been used for
facial expression synthesis under the framework of image-
to-image translation (Isola et al 2017; Zhu et al 2017; Choi
et al 2018). While GANs can generate photo-realistic ex-
pressions if the distribution of test images remains similar
to the training images, their performance may degrade if the
distribution of test images varies.

There is an important distinction to be made between ex-
pression recognition which typically maps to O(1) classes
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Fig. 2 Left: Global versus local receptive fields. Local connections
can convey only required information and reduce over-fitting. Right:
Growth in number of parameters as image size is increased. Local re-
ceptive fields remain practical for larger image sizes while regression
with global receptive fields becomes impractical even for image sizes
as small as 128× 128 pixels.

and synthesis which is a very high-dimensional mapping of
O(mn) for m × n image size. Therefore, synthesis models
use lots of parameters (even for small image sizes such as
56 × 56) and require much larger facial expression datasets
than those currently used for learning expression recogni-
tion models. In the absence of such large datasets, learn-
ing FES models that generalize well requires architectures
with relatively fewer parameters as we propose in the cur-
rent manuscript. A key assumption in our work is that facial
expressions often constitute sparsely distributed and locally
correlated changes from a neutral expression. This enables
us to limit the number of parameters in the model at appro-
priate locations and achieve good generalization.

In our model, every output pixel directly observes only a
localized region in the input image. In other words, each out-
put pixel has a Local Receptive Field (LRF). This is in con-
trast to models such as ridge regression and multilayer per-
ceptrons in which each output unit observes all input units
and therefore has Global Receptive Fields (GRF). The dif-
ference between LRFs and GRFs is illustrated in Figure 2.
The simplicity introduced by LRFs is beneficial for FES
since expressions constitute multiple local phenomena – so-
called action units. GRFs force a pixel to observe too much
unrelated information thereby making the learning task harder
than it really should be. Therefore, for some problems, LRFs
are sufficient and more effective (LeCun et al 1998; Coates
and Ng 2011) as they lead to less convoluted local minima
by inducing a regularization effect. We enforce sparsity in
the model by making all the non-local weights zero. This
greatly helps the learning task and improves generalization
performance. The concept of locality has helped us to de-
velop a memory-efficient, closed-form solution that is ap-
plicable to larger problem sizes.

The proposed model is equivalent to a masked version
of ridge regression and hence has a global minimum. Due to
LRFs, this minimum can be computed quickly with very low
computational complexity using our proposed non-iterative,
closed-form solution. Also due to LRFs, the number of pa-

rameters in our model becomes extremely small. This is
important because real world applications of any good al-
gorithm may be offset by the large number of parameters
to be learned and stored. This leads to high computational
cost at test time. This is especially true for deep network
based GANs that contain a huge number of parameters. This
leads to higher spatial and computational complexity at test
time. This becomes more challenging if the trained mod-
els are to be deployed in resource-constrained environments
such as mobile devices and embedded systems with limited
memory, computational power, and stored energy. A com-
parison of the proposed algorithm with four state-of-the-
art GAN models including Pix2Pix (Isola et al 2017), Cy-
cleGAN (Zhu et al 2017), StarGAN (Choi et al 2018) and
GANimation (Pumarola et al 2019) is shown in Table 1. The
proposed algorithm has more than two orders of magnitude
fewer number of parameters than each of these GANs. In
addition, it is more than two orders of magnitude faster in
synthesizing an expression.

In contrast with other approaches, the role of weights
and biases in our model can be clearly distinguished. The
weights are predominantly used to transform the visible parts
of the input expression into the target. The biases are used to
insert hidden information such as teeth for a happy expres-
sion. The model also adjusts weights according to whether
a particular pixel is relevant for a particular expression. For
example, an output pixel ‘looking at’ the mouth region might
have a greater role in generating happy expressions than a
pixel looking at the top of the forehead. We exploit these lo-
cally adaptive weights for identity preserving FES. Experi-
ments performed on three publicly available datasets (Lundqvist
et al 1998; Savran et al 2008; Lyons et al 1998) demon-
strate that our algorithm is significantly better than `0, `1
and `2-regression, SVD based approaches (Tenenbaum and
Freeman 2000), and bilinear kernel reduced rank regression
(Huang and De la Torre 2010) in terms of mean-squared-
error and visual quality.

The proposed approach also exhibits an advantage over
GAN models in terms of generalization. Figure 1 shows
a comparison of happy expressions synthesized for pencil
sketches and several animal faces by the proposed algorithm
and by Pix2Pix (Isola et al 2017), CycleGAN (Zhu et al
2017), StarGAN (Choi et al 2018) and GANimation (Pumarola
et al 2019). All methods were trained entirely on real hu-
man faces, therefore these test images may be considered
as out-of-dataset. All four GANs found it very challenging
to induce a happy expression in such out-of-dataset images.
For the case of animal faces, none of the GANs was able
to induce a happy expression. The proposed algorithm gen-
eralized well by learning essential attributes of happy ex-
pressions and it was able to induce the happy expression in
non-human faces as well. Due to the small number of param-
eters, the proposed algorithm can be easily trained on quite
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small datasets and in very short time compared to the GANs.
Despite using local receptive fields and a masked version of
ridge regression, our objective function is still convex and
we derive a non-iterative, closed-form solution for the global
minimum. This is a fundamental algorithmic contribution of
the current work. To the best of our knowledge, the proposed
algorithm is novel and no such algorithm has been proposed
before for the FES problem. In addition to FES, the pro-
posed formulation can potentially be applied to the broader
problem of image-to-image translation. The main contribu-
tions of the current work can be summarized as follows:

i. Convex optimization with closed-form solution of global
minimum in a single iteration.

ii. Extremely low spatial and computational complexity.
iii. Trainable on very small datasets.
iv. Intuitive interpretation of learned parameters can be ex-

ploited to improve results.
v. Good generalization over different types of images that

state-of-the-art GANs find very challenging to synthe-
size.

The rest of the paper is organized as follows. Related work
on traditional FES methods and GANs is given in Section 2.
The proposed Masked Regression (MR) algorithm is given
in Section 3 and its local receptive field learning formulation
is compared with sparse receptive fields in Section 4. Exper-
imental details and comparisons with traditional methods
are given in Section 5. A blur refinement algorithm called
Refined Masked Regression (RMR) is given in Section 6
and comparison with state-of-the-art GANs is given in Sec-
tion 7. Conclusions and future directions are presented in
Section 8.

2 Related Work

The Facial Expression Synthesis (FES) research can be di-
vided into blending based techniques and learning based
techniques. Blending based techniques primarily merge mul-
tiple images to synthesize new expressions (Zhang et al 2006;
Lin and Lin 2011; Pighin et al 2006). However, such meth-
ods require multiple facial landmarks to be pre-identified
and do not propose a unified framework for dealing with
hidden information, such as teeth, that is usually added in a
separate, post-processing step.

For the case of learning-based techniques, FES has re-
ceived relatively less attention compared to expression recog-
nition or face recognition across varying expressions (Zeng
et al 2009; Jain and Li 2011; Georgakis et al 2016). Cootes
et al (2001) combined shape and texture information into
an Active Appearance Model (AAM). Given facial land-
marks, their model can be fit to an unseen face and subse-
quently used for synthesis and recognition. Liu et al (2001)
computed ratio between a neutral face and a face with an

expression at each pixel to obtain an expression ratio im-
age. A new neutral face can then be mapped to the corre-
sponding expression via the ratio image. A bilinear model
is employed by Tenenbaum and Freeman (2000) to learn
the bases of person-space and expression-space in a single
framework using SVD. Wang et al (2003) learned a trilinear
model using higher order SVD. Tensor-based AAM models
have been employed for dynamic facial expression synthe-
sis (Lee and Elgammal 2006) and transfer (Zhang and Wei
2012). Facial expression transfer differs from FES since it
transfers the expression of a source face onto a different tar-
get face (Costigan et al 2014; Zeiler et al 2011; Wei et al
2016; Thies et al 2016). Expression transfer methods include
(De La Hunty et al 2010; Zeiler et al 2011; Liu et al 2014;
Wei et al 2016). Suwajanakorn et al (2015) constructed a
controllable 3D model of a person from a large number of
photos. While they report impressive results, the large num-
ber of per-person training images required for model learn-
ing may not always be available. A bilinear model is em-
ployed by Tenenbaum and Freeman (2000) to learn the bases
of person-space and expression-space in a single framework
using SVD. Wang et al (2003) learned a trilinear model for
learning bases of person-space, expression-space and feature-
space using higher order SVD. Lee and Elgammal (2006)
incorporated the expression manifold with the Tensor-AAM
model to synthesize dynamic expressions of the training face.
Lee and Kim (2008) aligned texture with the normalized
shape of tensor based AAM. The expression coefficients of a
test face were synthesized by linearly combining the expres-
sion coefficients of training faces. Zhang and Wei (2012)
used Tensor Face combined with an expression manifold to
synthesize the dynamic expressions of a training face, then
extracted and transferred the dynamic expression details of
the training face to the target face. Suwajanakorn et al (2015)
have made a system to construct a controllable 3D model of
a person from a large number of photos. While they report
impressive results, the large number of training images re-
quired for model learning may not always be available. More
details and surveys on facial expression synthesis and trans-
fer may be found in (Pantic and Rothkrantz 2000; Deng and
Noh 2008; Zeng et al 2009).

The kernelized regression-based FES method of Huang
and De la Torre (2010) learns bases for neutral as well as
expression faces. By using the neutral basis they can re-
tain identity preserving details such as glasses and facial
marks, using a post processing step. This method also im-
proves generalization by limiting the effective number of
free parameters. These properties are shared by our pro-
posed method as well. The Bilinear Kernel Reduced Rank
Regression method for static general FES was proposed by
Huang and De la Torre (2010). It synthesizes general ex-
pressions on the face of a target subject. A relatively sim-
ilar approach has been proposed by Jampour et al (2015)
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for face recognition. Their approach employs local linear re-
gression on localized sparse codes of non-frontal faces to
obtain codes of frontal faces. Those codes are then used
in a frontal-face classifier to indirectly classify non-frontal
faces, though they do not synthesize expressions. In contrast
to their approach for face recognition, we propose LRFs for
facial expression synthesis.

A deep belief network for facial expression generation
has been proposed by Susskind et al (2008). However, unlike
our approach, they cannot synthesize expressions for unseen
faces. Their output is usually a semi-controllable mixture of
different action units. In our proposed model, we have exact
control over which expression is to be synthesized. Due to
the use of Restricted Boltzmann Machines their expression
generation phase has high computational cost.

The most recent advances in expression synthesis have
been achieved via Generative Adversarial Networks (GANs).
A typical GAN consists of two competing networks: a gen-
erator that takes a random noise vector (and conditioning in-
put) and generates a fake image, and a discriminator network
that predicts the probability of an input image being real or
fake. These two networks compete against each other to up-
date their weights via minimax learning. Conditional GANs
(cGANs) condition their generator and discriminator with
additional information such as images or labels. Recently,
GAN based frameworks have shown impressive results in
image-to-image translation tasks. Pix2pix (Isola et al 2017)
is a paired image-to-image translation framework based on
cGAN and `1 reconstruction loss. Unpaired image-to-image
translation has also been successfully demonstrated by (Zhu
et al 2017; Kim et al 2017; Liu et al 2017; Yi et al 2017).
CycleGAN (Zhu et al 2017) learns a mapping between two
different domains and incorporates a cycle-consistency loss
with an adversarial loss to preserve key attributes between
the two domains. Liu et al (2017) have proposed UNIT frame-
work that combines variational autoencoder with Coupled
GAN (Liu and Tuzel 2016). UNIT consists of two gener-
ators that share the latent space between two different do-
mains. All of the above-mentioned approaches are designed
for translations between two domains at a time. More re-
cently, multi-domain image-to-image translation frameworks
have also been proposed. StarGAN (Choi et al 2018) learns
mappings among multiple domains using a single genera-
tor conditioned on the target domain labels. The GANima-
tion model of Pumarola et al (2019) introduced a framework
that takes continuous target domain labels in the form of ac-
tion units and can produce varying degrees of expressions
containing multiple action units. Their method is more ac-
curately described as an expression transfer method instead
of synthesis. Their method translates a source face via auto-
matically detected action units from a target face. Reliable
automatic extraction of action units from face images is a
prerequisite for their method to work properly.

Most of these GAN based frameworks share the same
problem with other generative models, that is, partial control
over the generated images. These methods synthesize the
whole image, and therefore also influence attributes in addi-
tion to those that were targeted. Strict local control over gen-
erated faces is not guaranteed, though some recent GANs
have attempted that as well (Shen and Liu 2017; Zhang et al
2018). Image to image translation using GANs being a very
recent research direction, has been quickly progressing.

In the current work we compare the performance of four
GANs including Pix2Pix, CycleGAN, StarGAN and GAN-
imation with the proposed Masked Regression (MR) algo-
rithm. These GANs produce excellent results if the test im-
age has similar distribution as the training dataset. As the
distribution of test image diverges from the training dataset
distribution, the performance of these GANs deteriorates. In
contrast to these GANs, the proposed MR algorithm gener-
alises well to very different type of images, can be trained
using very small datasets, have a closed form solution with
very small spatial as well as computational complexity. To
the best of our knowledge, no such technique has been pro-
posed before us for facial expression synthesis.

3 LRF Based Proposed Learning Formulation

We model the FES problem as a linear regression task whereby
the output is compared with target faces. Denoting every in-
put face as a vector in RD and target face as a vector in RK ,
we can form the design and response matrices X ∈ RN×D
and T ∈ RN×K respectively. HereN is the number of train-
ing pairs. The design/response matrices are formed by plac-
ing the input/target vectors in row-wise fashion. Standard
linear regression can also be viewed as a single layer net-
work with global receptive fields (GRF). Our goal is to learn
a transformation matrix W ∈ RK×D that minimizes the `2-
regularized sum of squared errors

ERR(W ) =
1

2
||WXT − TT ||2F +

λ2
2
||W ||2F (1)

where regularization parameter λ2 > 0 controls over-fitting
and || · ||2F is the squared Frobenious norm of a matrix. This
is a quadratic optimization problem with a global minimizer
obtained in closed-form as

WRR = ((XTX + λ2I)
−1XTT )T (2)

As discussed earlier, we posit that transformations from one
facial expression to another depend more on local informa-
tion and less on global information. Therefore, we prune the
global receptive fields to retain local weights only. This can
be understood by considering faces as 2D images. An out-
put unit at pixel (i, j) is then forced to ‘look at’ only a local
window around pixel (i, j) in the input matrix. This can be a
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3× 3 window covering region (i− 1, j− 1) to (i+1, j+1)

or an even larger window. Such localized windows are re-
ferred to as local receptive fields (LRF) and have been used
in Convolutional Neural Networks (LeCun et al 1998). In
order to represent presence or absence of weights, we con-
struct a mask matrix as large as the transformation matrix
W where

Mij =

{
0 to fix Wij to 0

1 to learn Wij

(3)

For every pixel in the output, there is a corresponding row in
matrix M indexed according to row-major order. This row
contains one entry for each pixel in the input which is also
indexed according to row-major order. All entries are 0 ex-
cept for those input pixels that are in the receptive field of
the current output pixel. For example, let input and output
images both be of size 5× 5. Then in vectorized form, input
and output are vectors in R25. Matrix M will have 25 rows
corresponding to output pixels and 25 columns correspond-
ing to input pixels. Figure 3 shows the mask M constructed
in this manner. Finally, to incorporate bias terms and treat
them as learnable parameters, a column of ones is appended
as the last column of M .

Input pixel index j in row-major order
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
...

...
19 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1
21 1 1 1 1
22 1 1 1 1 1 1
23 1 1 1 1 1 1
24 1 1 1 1 1 1
25 1 1 1 1

Fig. 3 Mask M corresponding to input image of size 5 × 5, output
image of size 5 × 5 and receptive fields of size 3 × 3. For clarity,
entries equal to 0 are left blank. If the entry at row i and column j is 1,
then output pixel i has input pixel j in its receptive field.

Since the local receptive fields obtained by masking the
weights are subsets of global receptive fields, learning the
optimal weights still involves a quadratic but masked objec-
tive function

EMR(W ) =
1

2
||(W ◦M)XT − TT ||2F +

λM
2
||W ◦M ||2F

s.t. Wkd = 0 if Mkd = 0, 1 ≤ k ≤ K, 1 ≤ d ≤ D, (4)

where ◦ denotes the Hadamard product of two equal sized
matrices and λM > 0 is a regularization parameter. This

formulation fixes unwanted weights to 0 while encourag-
ing the sum-squared-error and magnitudes of the wanted
weights to be low. We term this as the masked regression
(MR) problem. In contrast to `1-penalized regression (Tib-
shirani 1996) that forces most weights to be zero without de-
termining which ones exactly, our proposed masked regres-
sion makes specific, pre-determined weights equal to zero.
That is, masked regression leads to localized sparsity. Our
formulation (4) corresponds exactly to a single layer net-
work with local receptive fields. The reduction in the num-
ber of parameters to be learned due to LRFs allows for very
fast training of such systems.

Due to the presence of the Hadamard product, writing a
closed-form solution for masked regression is not as straight-
forward as that for ridge regression (2). However, we handle
this problem by writing out objective function (4) in terms
of individual weights Wkd as

EMR(W ) =
1

2

N∑
n=1

K∑
k=1

{(
D∑
d=1

WkdMkdXnd

)
− Tnk

}2

+
λM
2

K∑
k=1

D∑
d=1

W 2
kdMkd (5)

This allows us to compute entries of the gradient vector
∇EMR(W ) ∈ RKD×1 as

∂EMR(W )

∂Wij
=

N∑
n=1

{(
D∑
d=1

WidMidXnd

)
− Tni

}
MijXnj

+ λMWijMij (6)

where 1 ≤ i ≤ K and 1 ≤ j ≤ D. It must be noted
that for LRFs looking at r × r pixels in the previous layer,
the summation over d in (5) and (6) need not be performed
more than r2 << D times since the corresponding row
in mask matrix M contains not more than r2 ones. Com-
pared to ridge regression and its corresponding global re-
ceptive fields, this leads to a significant decrease in memory
required for storing the transformation matrix W . We can
also compute entries of the Hessian matrix H ∈ RKD×KD
as

∂2EMR(W )

∂Wij∂Wlm
=


MijMlm

N∑
n=1

XnjXnm if i = l & j 6= m

M2
ij

N∑
n=1

X2
nj + λMMij if i = l & j = m

0 if i 6= l

(7)

where 1 ≤ {i, l} ≤ K and 1 ≤ {j,m} ≤ D. This allows
us to compute the optimal solution via a single Newton-
Raphson step as

w = −H−1∇EMR(W ) (8)
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where w ∈ RKD×1 represents row-wise concatenated en-
tries of W . That is, w =

[
W 1 W 2 . . . WK

]T
where W k

denotes the 1 × D vector containing the values of the k-th
row of W . The initial W0 required for computing ∇E can
be set as all zeros since the initial value does not affect the
global solution. Therefore, we can find the transformation
parameters vector w by solving the linear system

Hw = −∇EMR(W ). (9)

Since H is a block-diagonal matrix with K blocks of size
D × D, we can solve for each row separately instead of
solving the complete linear system in KD variables involv-
ing a KD ×KD system matrix. This means decomposing
the larger linear system into K smaller linear systems in D
variables involving a D ×D system matrix. These systems
can also be solved in parallel. The k-th linear system can be
written as

HΩk,Ωk
wΩk

= −∇EMR
Ωk

(10)

where Ωk is the set of indices corresponding to the place-
ment of the k-th row of W in vector w. Because of the con-
straints in M , the solution vector wΩk

can contain at most
r2 non-zero entries at pre-determined locations correspond-
ing to receptive fields of size r × r. We can solve for these
non-zero entries only by removing those rows of∇EMR

Ωk
and

those rows and columns of HΩk
that correspond to zero el-

ements of wΩk
. This makes the linear system significantly

smaller with at most r2 variables. Denoting the indices of
non-zero entries by Ω̂k, the linear system becomes

HΩ̂k,Ω̂k
wΩ̂k

= −∇EMR
Ω̂k

(11)

This decomposition into K extremely small linear systems
makes solving the masked regression problem extremely fast
and with very low space complexity compared to traditional
regression solutions. A comparison of model size of the pro-
posed solution with traditional ridge regression based so-
lutions for increasing problem sizes is shown in Figure 2.
It can be observed that memory required for storing ridge
regression parameters quickly exceeds practical limits even
for small images. In contrast, the use of LRFs in masked re-
gression keeps the number of parameters and, consequently,
memory requirement low even for large images.

4 Local versus Sparse Receptive Fields

The local receptive fields that we propose can also be viewed
as extremely sparse receptive fields with manually designed
and fixed localizations. An interesting alternative is to learn
sparse receptive fields. Will a sparsely learned topology also

converge to our local receptive fields? To answer this ques-
tion we learn a transformation matrix W that minimizes the
`1-regularized sum of squared errors

1

2
||WXT − TT ||2F + λ1||W ||1 (12)

where λ1 > 0 controls the level of sparsity and therefore
also controls over-fitting. The rows of the optimal transfor-
mation W will correspond to sparse receptive fields. Error
function (12) can be decomposed into a sum of K indepen-
dent `1-regression problems that can be solved in parallel.
That is

K∑
i=1

1

2
||XW i − Ti||22 + λ1||W i||1 (13)

where W i is the D× 1 vector containing the values in the i-
th row ofW and Ti is theN×1 vector containing the values
in the i-th column of T . We solve the i-th sub-problem

min
W i

1

2
||XW i − Ti||22 + λ1||W i||1 (14)

using the LASSO algorithm (Tibshirani 1996).
In order to provide a fair comparison with masked re-

gression that limits the size of the receptive field, it is better
to minimize the `0-penalized regression error which can also
be decomposed into K separate sub-problems

min
W i

1

2
||XW i − Ti||22 s.t. ||W i||0 ≤ λ0 (15)

in which hyperparameter λ0 ∈ Z+ acts as an upper-bound
on the number of non-zero entries in the solution. Therefore,
setting λ0 = r2 makes the sparse receptive fields obtained
via (15) comparable to the local receptive fields of size r×r
via masked regression. We approximated (15) using the Or-
thogonal Matching Pursuit algorithm (Pati et al 1993; Tropp
and Gilbert 2007). In the next section, we present a compar-
ison of both `0 and `1 regression with the proposed masked
regression method.

5 Experiments and Results

In order to provide enough data for learning useful map-
pings while avoiding over-fitting, we combine three datasets
(Lundqvist et al 1998; Savran et al 2008; Lyons et al 1998)
containing the neutral and six basic expressions. The ba-
sic expressions include afraid, angry, disgusted, happy, sad
and surprised. The KDEF dataset (Lundqvist et al 1998)
contains face images of 70 subjects (35 males and 35 fe-
males). The Bosphorous dataset (Savran et al 2008) con-
tains face images of 105 subjects, each subject having up
to 35 expressions. The Japanese Female Facial Expression
(JAFFE) dataset (Lyons et al 1998) contains face images of
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10 Japanese actresses in neutral and the six basic expres-
sions. By combining these three datasets, we obtain a total
of 1116 facial expression images. For each experiment we
performed an 80%, 10%, 10% split of the image pairs from
the input and target expressions as training, validation and
testing sets. We performed alignment of all images with re-
spect to a reference face image. All images were normalized
to contain pixel values between 0 and 1.

5.1 Experiments on Grayscale Images

To evaluate the proposed masked regression (MR) method
for synthesizing expressions on gray scale images, we com-
pare it with existing regression based techniques including
`0, `1 and `2-regression as well as Kernelized Reduced Rank
Regression (KRRR) and its bilinear extension (BKRRR) (Huang
and De la Torre 2010). In KRRR and BKRRR, a rank con-
straint is used to limit the number of free parameters in a
kernel regression model for learning expression bases. We
also compare with basis learning approaches including PCA
and SVD-based bilinear model for separation of style and
content (SSC) (Tenenbaum and Freeman 2000). In PCA, a
basis is learned for each expression. A test face is mapped to
a target expression by projection onto the target expression
basis and then reconstructed from the projected coefficients.
In SSC, bases are learned for expressions as well as persons.

For `2-regression and masked regression, we cross val-
idated the corresponding regularization parameters, λ2 and
λM respectively, over 10 equally spaced values between 0.1

and 10. For `1-regression, λ1 was cross-validated from 10−3

till 102 using 100 equally spaced values in log space. For
`0-regression, λ0 was cross-validated for all integers from
1 till the number of training examples. For each method,
the best value of the corresponding regularization parame-
ter was used to finally train on the combined training and
validation set. Weights learned from this final training were
then used to compute mean-squared-errors (MSE) on the
test data. We performed 12 experiments corresponding to
the mapping of neutral to the six other expressions and vice
versa. It can be seen from Table 2 that MR obtains the lowest
MSE averaged over the 12 combinations. Visual comparison
of different algorithms is presented in Figure 4. It can be ob-
served that only local receptive fields learned via MR were
able to transform the expression while preserving identity
and retaining facial details. Figure 5 contains visual results
of transforming neutral expressions to the six basic expres-
sions using MR. It demonstrates that MR is a generic algo-
rithm that can efficiently transform any expression into any
other expression while preserving identities and individual
facial details.
Role of receptive field size: The proposed method can be
easily modified to have not-so-local receptive fields. For ex-
ample, a 3× 3 field that looks at every other pixel in a 5× 5

window or every third pixel in a 7× 7 window. These mod-
ifications only involve setting the mask M in Figure 3 ap-
propriately. This way, an output pixel can ‘observe’ a larger
region of the input while using the same number of weights.
For example, 9 weights for any r × r receptive field. This
helps to avoid over-fitting by limiting the complexity of the
model. Table 2 compares performance of different receptive
field sizes. For the dataset used, we observed minimum MSE
for 5 × 5 receptive fields. Employing too large a receptive
field increased the MSE since long-range receptive fields fail
to capture the local nature of facial expressions.
Role of weights and biases: In order to observe the role of
only weights, we set the bias values to zero, and observe the
resulting mappings. Figure 6 demonstrates that a major role
of the weights is to wipe out the original expression while
also sometimes inserting subtle intensity changes to affect
the new expression. However, the weights cannot efficiently
generate unseen content such as teeth that are hidden in the
neutral and visible in the happy expressions. This inability
to affect hidden expression units is overcome by the biases
which adjust so that the major role is to produce the remain-
ing, hidden expression units.

Once learned appropriately, the bias remains the same
for all input test images. Therefore, it is not surprising to
see in Figure 7 that the learned model exploits the bias only
to affect target expression units that the weights could not
map. The biases have no role in identity preservation. Fig-
ure 8 compares the average absolute intensity of the trans-
formation Wx produced by the weights only with the ad-
ditive transformation b produced by the biases only. In this
figure, for 12 transformations between expressions, weights
learned via `2-regression have less intensity than learned bi-
ases. This is a major cause of loss of identity in the trans-
formed expression learned via `2-regression. In contrast, for
the proposed masked regression the transformation via the
weights was roughly 5 times more important than the trans-
formation produced by adding the biases only. This is why
the proposed MR method has remained the best in preserv-
ing identity among all the considered methods.

5.2 Experiments on RGB Images

A straight-forward extension of the proposed method to color
images is to learn a separate mapping for each channel. A vi-
sual comparison of learning per-channel mappings for MR
and other methods in Figure 9 for RGB images. It can be ob-
served that MR is most successful in retaining background
and other non-facial details that have no role in expression
generation. The role of weights and biases for RGB images
can be visualized in Figures 6 & 7. Table 3 shows that MR
compares favorably against all competing methods in terms
of MSE on RGB images. The average training time for the
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Input PCA SSC `2 KRRR BKRRR `0 `1 MR Target

Fig. 4 Comparison of different techniques with the proposed MR method for the neutral to happy mapping. The proposed method was able to
transform the expression while preserving identity and retaining facial details the most.

Table 2 Quantitative comparison of output and target images using mean-squared-error (MSE) scaled by 102. The algorithms used are PCA,
SSC (Tenenbaum and Freeman 2000), `2-regression, Kernelized Regression (KRRR and BKRRR) (Huang and De la Torre 2010), `0-regression,
`1-regression and the proposed masked regression (MR). MRr refers to MR with receptive fields of size r × r pixels.

In Out PCA SSC `2 KRRR BKRRR `0 `1 MR3 MR5 MR7 MR9

Neutral Afraid 2.366 2.365 2.402 2.37 2.30 2.040 1.970 1.813 1.812 1.870 1.940
Neutral Angry 2.109 2.111 2.111 2.05 2.00 1.810 1.715 1.655 1.598 1.619 1.663
Neutral Disgusted 2.028 2.028 2.152 2.13 2.12 1.862 1.764 1.625 1.588 1.639 1.694
Neutral Happy 1.756 1.755 1.901 1.86 1.84 1.563 1.481 1.410 1.412 1.457 1.487
Neutral Sad 1.623 1.621 1.816 1.77 1.80 1.518 1.429 1.301 1.309 1.350 1.379
Neutral Surprised 2.499 2.500 2.112 2.07 2.04 1.983 1.789 1.820 1.770 1.791 1.838

Afraid Neutral 2.537 2.530 1.994 1.85 1.85 1.733 1.611 1.401 1.411 1.500 1.589
Angry Neutral 2.174 2.175 1.757 1.62 1.62 1.583 1.444 1.429 1.372 1.414 1.465

Disgusted Neutral 2.218 2.216 1.765 1.61 1.61 1.465 1.371 1.395 1.348 1.393 1.433
Happy Neutral 1.954 1.954 1.567 1.50 1.50 1.346 1.245 1.251 1.234 1.274 1.311

Sad Neutral 1.714 1.712 1.505 1.42 1.42 1.375 1.233 1.188 1.171 1.210 1.243
Suprised Neutral 2.682 2.680 1.776 1.66 1.66 1.697 1.522 1.562 1.496 1.492 1.532

Mean MSE 2.138 2.137 1.904 1.83 1.82 1.665 1.548 1.487 1.460 1.501 1.548

closest competitor (`1-regression) was much larger than MR
as shown in Table 4.

A cheaper alternative is to replicate the mapping learned
from gray-scale images for all color channels. Figure 10
demonstrates the effectiveness of this approach in prevent-
ing color leakage. In addition to retaining original color ra-
tios, this solution causes no increase in the number of learn-
able parameters when scaling from gray-scale to color im-
ages. However, this approach can cause the resulting image
to lose some of its colorfulness.

A third option is to learn a single mapping between color
vectors. The error function for masked regression for multi-
channel color images can be written as

ECMR(W ) =
1

2

C∑
c=1

||(W ◦M)XT
c − TTc ||2F

+
λM
2
||W ◦M ||2F (16)

whereC is the number of channels andXc and Tc are design
matrices corresponding to channel c. In this way, the number
of learnable parameters remains the same as for a gray-scale
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Neutral Afraid Angry Disgusted Happy Sad Surprised

Fig. 5 For each neutral input, rows 1, 3 and 5 show expressions generated via proposed MR and rows 2, 4 and 6 show ground-truth. MR effectively
transformed expressions while preserving identities and facial details.

x Wx Wx+ b x Wx Wx+ b

Grayscale synthesis Color synthesis

Fig. 6 Left to right: x is the neutral input, Wx is the happy expres-
sion synthesized with bias b = 0 and Wx+b is the complete synthe-
sized happy expression. Second row shows the mouth regions zoomed
in. The weights and biases learned via masked regression assumed dis-
tinct, complimentary roles. While the weights wiped out the mouth
and surrounding regions, the biases (Figure 7, column 4) then inserted
missing information such as teeth. Regions not playing a significant
role in the mapping (e.g. hair, forehead) were left unaffected which
helps in preserving the identity of the input face.

Table 3 Comparison of MR with `2, `1 and `0-regression on RGB
images of size 56× 56 in terms of mean-squared-error (×102). MRr

refers to masked regression with receptive fields of size r × r pixels.

In Out `2 `0 `1 MR3 MR5 MR7 MR9

Neu Afr 1.183 1.209 1.081 1.027 1.026 1.046 1.073
Neu Ang 1.088 1.114 0.954 0.909 0.887 0.898 0.919
Neu Dis 1.067 1.136 0.996 0.914 0.898 0.916 0.939
Neu Hap 0.962 0.940 0.836 0.792 0.789 0.803 0.818
Neu Sad 0.977 0.985 0.835 0.760 0.768 0.783 0.794
Neu Sur 1.069 1.124 0.997 1.034 1.007 1.007 1.025

Afr Neu 1.108 1.114 1.002 0.875 0.886 0.933 0.974
Ang Neu 0.964 1.013 0.864 0.852 0.835 0.858 0.882
Dis Neu 1.010 0.970 0.882 0.862 0.843 0.864 0.884
Hap Neu 0.868 0.833 0.748 0.748 0.738 0.759 0.782
Sad Neu 0.913 0.921 0.784 0.760 0.754 0.772 0.790
Sur Neu 1.039 1.048 0.911 0.949 0.917 0.911 0.928

Mean MSE 1.021 1.034 0.907 0.874 0.862 0.879 0.901
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Fig. 7 Biases of masked regression corresponding to six basic expres-
sions. Masked regression exploits the bias for learning expression spe-
cific action units such as eyebrow, lip or cheek movements. It is also ex-
ploited for adding content that cannot be captured by the weights. For
example, appearance of teeth in happy expressions is not represented
by any action unit but is still captured by the bias. The biases also rep-
resent some arbitrary face but compared to the weights, its importance
is low (darker intensities). All images have been post-processed to in-
crease visibility.

`2-regression

Masked regression

Fig. 8 Relative importance of weights and biases. Over 12 transfor-
mations, we compare the average absolute intensity of the transforma-
tion produced by the weights with the additive transformation learned
as biases. For the case of `2-regression, the bias often dominated the
weights, leading to loss of identity. For MR, the transformation via
weights was roughly 5 times as important as the transformation pro-
duced by adding the bias only. This leads to better identity preserva-
tion.

Table 4 Comparison of training times in seconds averaged over 12
different expression mappings.

MR `1 `0 `2

0.010 16.782 0.237 0.115

mapping but these parameters are now learned from color
vectors instead of gray-scale pixels. Results of this approach
can be seen in Figures 1, 19 and 21.

Experiments are performed on other color spaces as well
including YCbCr, Lab and HSV. However, best results were
observed in the RGB color space. This may be due to the
fact that the sparse, distributed, and local nature of facial
expressions that is exploited by MR is better represented in
the RGB color space.

Input `2 `0 `1 MR3 Target

Fig. 9 Comparison of `2-regression, `0-regression, `1-regression and
Masked Regression (MR) results for the neutral to angry mapping on
RGB images. Only local receptive fields were able to transform the
expression while preserving identity the most and also retaining facial
details the most. Last two rows are zoomed-in views of the bottom-
left corners corresponding to rows 5 and 6 respectively. MR preserves
background most successfully.

Sparsity comparison: In addition to better performance and
faster training, the ratio of the number of non-zero weights
learned via the closest competitor (`1-regression) to those
learned via MR was 1.94 after averaging over 12 expression
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Gray MR
Input Per-channel MR Replicated Vector MR

Fig. 10 Options for performing MR on color imges. Column 2: Color
leakage due to learning separate transformations for each color chan-
nel. The eyebrow has developed a greenish tinge. Column 3: This can
be avoided by using weights learned from a gray-scale mapping and
replicating them on each color channel. However, it leads to some loss
of colorfulness. Column 4: Best results are acheived by learning a sin-
gle mapping between color vectors.

transformations over RGB images. In other words, masked
regression was almost twice as sparse as `1-regression.

5.3 Experiments on Non-Frontal Faces

We learned a neutral to happy mapping for non-frontal faces
via the proposed MR technique. Results on a few test im-
ages are shown in Figure 11 for 45◦ and 90◦ poses from the
KDEF dataset. Training was performed on 56 image pairs
while validation and test sets contained 7 image pairs each.
It can be seen that MR learns to change only the relevant
portions of the input. Very small details (such as long hair
visible near the mouth profile in 45◦ poses) are left unaf-
fected as long as they have no role to play in the expression
mapping.

5.4 Generalization over Out-of-Dataset Images

Since masked regression uses so few parameters, it should
be expected to generalize better than competing approaches.
To check this, some specific and some arbitrary images were
downloaded from the Internet. The intensity distributions of
these images were significantly different from the datasets
used for training, validation and testing.

5.4.1 Photographs

Figure 12 demonstrates that masked regression generalizes
well over photographs taken in unconstrained settings of
persons not belonging to any of the training datasets. The
closest competing technique in this instance was once again
`1-regression which was sometimes able to produce iden-
tity preserving expression mappings but generally produced
hallucination artifacts. It can also be noted for test faces
that are not entirely frontal, MR does not enforce a strong
frontal prior on the generated expression. The same cannot
be said about competing methods that introduce a frontal
bias learned from training data consisting of only frontal
faces.

5.4.2 Pencil Sketches and Animal Faces

Figure 13 shows the results of different regression methods
on pencil sketches. Masked regression sucessfully general-
ized over pencil sketches containing occlusion of the face-
and an atypical sketch drawn by appropriate placements of
English words. Competing methods demonstrated signifi-
cant bias towards the training data by changing the pose,
identity or facial details of the input face. In contrast, MR
was able to handle occlusion since it focuses on learning lo-
calized expression mappings instead of global mappings.

Figure 14 shows the results of generating expressions for
animal faces using the proposed algorithm. Since training
was performed entirely on real human faces, these results
demonstrate the strength of masked regression in learning
essential attributes of happy expressions and generalizing
them to non-human faces as well.

6 Blur Refinement Algorithm

In Figure 4, a comparison of different regression techniques
reveals blurinness in the synthesized expression images. In
case of MR, this is due to the fact that for weights learned
by minimizing sum-squared-error, predictions at test time
are conditional means of the target variable (Bishop 2006, p.
46). Blurring can be reduced by determining the role αij of
each output pixel in generating an expression. If a pixel has
no role in expression generation, then its output value can be
replaced by the corresponding value in the input image. This
refinement of results can be written as a linear combination
of input and output images. That is,

y′ = (1−α) ◦ x+α ◦ y (17)

where x,y and y′ are the the input, output and refined im-
ages respectively and the α map contains per-pixel impor-
tances used for blending the input and output. We refer to re-
finement of MR results via Equation (17) as Refined Masked
Regression (RMR). We compute the importance image α

as follows. First, we compute the `1-norm of the receptive
field (including bias) of each output pixel to obtain an im-
age s of absolute receptive field sums. Let µ and σ denote the
mean and standard deviation of image s. We standardize the
sums in s and compute their absolute values as z = | s−µσ |.
These z values indicate how different a receptive field is
from the average receptive field in terms of standard devi-
ation. Then we perform morphological dilation with a disk
shaped structuring element and rescale the result between
0 and 1. The dilation expands the influence of atypical re-
ceptive fields to surrounding pixels. Then we pass the re-
sult through a smoothed-out step-function so that pixels with
values greater than a threshold are moved towards 1 and the
rest are moved towards 0. The smooth step-function that
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Input Synthesized Target Input Synthesized Target Input Synthesized Target

Fig. 11 Synthesis of neutral to happy expressions on non-frontal faces learned via MR. Top: 45◦ and Bottom: 90◦ rotation.
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Fig. 12 Comparison of different regression methods on out-of-dataset face images downloaded from the Internet. The proposed masked regression
(MR) generalized better than the compared methods. Despite being trained on frontal faces only, MR did not enforce a frontal bias over inputs that
were not entirely frontal faces, while competing methods introduced a frontal bias.

we use in our experiments is the logistic sigmoid function
(1+exp(−k(z−τ)))−1 with k = 10 and threshold τ = 0.2.
After scaling the result between 0 and 1 again, we convolve
with a Gaussian filter to obtain a smooth α map. All pa-

rameters related to dilation and smoothing are set adaptively
with respect to image size.

This procedure of computing the α-map will make the
synthesized output more important for pixels with receptive
fields that are different from the average receptive field in
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Fig. 13 MR successfully generalized over pencil sketches. Left: a pencil sketch containing occlusion of the face, Right: an atypical sketch drawn
by appropriate placements of English words. Compared methods demonstrated significant bias towards the training data by changing the pose,
identity or facial details of the input faces. In contrast, MR was able to handle occlusion because it learns localized expression mappings.

terms of `1-norm. Figure 15 shows the α maps correspond-
ing to 6 expressions. It can be seen that eyes have a dominant
role in all expressions. The mouth and cheeks have an im-
portant role in generating happy expressions. The forehead
is important for afraid, angry and surprised expressions.

In the refined image, the input image contributes more in
regions that do not play a major role in expression genera-
tion. In contrast, in regions with a stronger role in expression
generation the output of MR contributes more. This best-
of-both-worlds solution adaptively copies sharp face details
from the input and expression details from the output as
shown in Figure 16. In the rest of the paper, we refer to blur
refined MR results as RMR.

7 Comparison with Generative Adversarial Networks

Recently, Generative Adversarial Networks (GANs) have in-
duced tremendous interest in image-to-image translation tasks.
We compare our results with four state-of-the-art GANs, in-
cluding Pix2Pix (Isola et al 2017), CycleGAN (Zhu et al
2017), StarGAN (Choi et al 2018) and GANimation (Pumarola
et al 2019). We trained each of the first three GANs on the
same dataset as used by MR and other algorithms as dis-
cussed in Section 5. We trained Pix2Pix for 100 epochs (in
5 hours) on the same machine as used for other experiments.
The CycleGAN was trained for 100 epochs in 48 hours and
the StarGAN was trained for 1000 epochs in 120 hours. As
reported in Table 4, training times for MR were less than a
second. We used a pre-trained GANimation model that was
trained for 30 epochs on the EmotionNet dataset (Fabian
Benitez-Quiroz et al 2016) which is much larger than our
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Fig. 14 Synthesized expressions for animal faces using the proposed algorithm. Since training was performed entirely on real human faces, these
results demonstrate the strength of masked regression in learning essential attributes of expressions and generalizing them to non-human faces as
well.

αAfraid αAngry αDisgusted αHappy αSad αSurprised

Fig. 15 Visualization of the α maps showing importance of different
facial regions in generating 6 different expressions. The α maps are
derived automatically as explained in Section 6.

training set. Figure 17 demonstrates that GANs may gen-
erate quite good results as long as the testing images come
from a distribution similar to the training images. However,
for input images with features uncommon in the training
set, such as facial hair in row number 4, the proposed MR
and RMR methods were successful in inserting a reason-
able looking smile. In addition, MR and RMR seem to bet-
ter preserve the outer profile of faces. In contrast, GANs

produce sharper images, though sometimes, the outer pro-
file is not well preserved (last row). For MR hidden details
such as teeth are learned as the bias while GANs generate
teeth as part of the samples from the learned distribution.
In some cases, the generated teeth are quite good, while in
other cases the teeth may degenerate and get mixed up with
lips and other facial features. RMR retains expression de-
tails of MR while presenting better facial details similar to
GANs.

Performance on out-of-dataset images: The performance
of GANs and MRs is compared on out-of-dataset images
downloaded from the Internet as discussed in Section 5.4.
We observe that in some cases, for testing images coming
from different distributions, GANs were not able to generate
convincing results as shown in Figure 19. In contrast, gen-
eralization of MR and RMR on out-of-dataset human pho-
tographs is better.
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Fig. 16 Visualization of the blur refinement algorithm as explained in
Section 6. Image details from input x and expression details from MR
output y are used to yield a refined expression image. The refined re-
sults show better recovery of facial hair, illumination effects and subtle
facial features. An overall improvement in identity preservation can
also be observed. The input image in the last row is made by com-
bining different letter strokes. In the refined result, many of the letter
strokes are also recovered (zoom in for better view).

We further compare the generalization of GANs and MR
algorithms on pencil-sketches of human faces in Figure 18.
Both GANs and MR algorithms were trained on the same
real human face photographs as described in Section 5. Once
again we observe that MR algorithms were able to produce
better smiles. The gray color distribution of input sketches
is also better preserved by the MR algorithms compared to
GANs. Among the four compared GANs, CycleGAN pro-
duced better smiles on sketch images.

The performance of GANs and MR algorithms is also
compared by generating happy expressions in animal faces.
While GANs and MR algorithms were trained on the same
real human face photographs, GANs were not able to syn-
thesize a happy expression on any animal as demonstrated
in Figures 1 and 18. In contrast, MR and RMR were able
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Fig. 17 Neutral to happy mappings synthesized by the proposed MR
and RMR, Pix2Pix, CycleGAN, StarGAN and GANimation. Results
are shown for unseen test images belonging to the same datasets that
were used for training. Results produced by GANs were sharp but
occasionally contained some artifacts. MR results were a bit smooth
while RMR was able to produce convincing expressions with more fa-
cial details.

to synthesize quite convincing happy expressions in animal
faces. These experiments reveal the generalization strength
of MR algorithms on images coming from distributions that
are significantly different from the distribution of training
datasets. Since GANimation results depend heavily on re-
liable extraction of action units from target faces, we used
three different target faces in order to perform a fair com-
parison. Figure 20 shows that even using multiple targets,
GANimation could not generalize well for pencil sketches
and animal faces. It also produced human-like artefacts in
animal faces. For example, the eyes of the cat were trans-
formed into human-like eyes. In contrast, our proposed method
preserved the cat’s original features (see third row of Figure
1).

Figure 21 compares the proposed method with the ex-
pression transfer results of GANimation (Pumarola et al 2019).
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Fig. 18 Results of neutral to happy mappings. In most cases, GANs
trained on real human photographs failed to generalize well. In con-
trast, MR and RMR also trained on real human photographs generated
quite satisfactory happy expressions. First three columns are pencil
sketches, last column is an animal face. CycleGAN was able to produce
good results in some sketches while Pix2Pix and StarGAN showed
more degraded performance. GANimation results depend heavily on
reliable extraction of action units from a target face. The fourth column
shows a 2D projection of a computer generated 3D model for which
only MR and RMR were able to induce a convincing and artefact-free
happy expression. The GANs were not able to induce expression in the
animal face shown in the last column.

Input images were taken from their paper. The proposed
method compared favorably against GANimation in terms
of expression synthesis but GANimation results are sharper,
irrespective of whether the expression was adequately trans-
ferred or not.

To quantitatively validate the out-of-dataset generaliza-
tion of the proposed method, we used the EmoPy1 expres-
sion recognition classifier pre-trained on the CK+ (Lucey
et al 2010) and FER+ (Barsoum et al 2016) datasets to find
the expression recognition accuracy for images synthesized
by different methods. Table 5 shows the drop in expres-
sion recognition accuracy when test set images are replaced
by out-of-dataset images. GAN based approaches suffered

1 https://github.com/thoughtworksarts/EmoPy
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Fig. 19 Results of neutral to happy mappings on out-of-dataset human
face photographs downloaded from the Internet. GANs fail to general-
ize well when test and training distributions are significantly different.
In contrast, expressions synthesized by MR and RMR were satisfac-
tory. Among the compared GANs, GANimation produced better re-
sults.

a larger drop in performance when tested on out-of-dataset
images.

Table 5 Drop in expression recognition accuracy (in percentage
points) when changing from test set images to out-of-dataset images.

Pix2Pix CycleGAN StarGAN GANimation MR

35.72 16.39 21.43 20.74 12.39

8 Conclusion

In this work masked regression has been introduced for fa-
cial expression synthesis using local receptive fields. Masked
regression corresponds to a constrained version of ridge re-
gression. An efficient closed form solution for obtaining the
global minimum for this problem is proposed. Despite being
simple, the proposed algorithm has shown excellent learn-
ing ability on very small datasets. Compared to the existing
learning based solutions, the proposed method is easier to
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Fig. 20 Using three different target faces (left), GANimation failed
to synthesize a happy expression over the two pencil sketches and the
two animal faces. The eyes of the cat were transformed into human-like
eyes (compare with sixth column of Figure 1).

implement and faster to train and has better generalization
despite using small training datasets. The number of param-
eters in the learned model is also significantly smaller than
competing methods. These properties are quite useful for
learning high-dimensional to high-dimensional mappings as
required for facial expression synthesis. Experiments per-
formed on three publicly available datasets have shown the
superiority of the proposed method over approaches based
on regression, sparse regression, kernelized regression and
basis learning for both grayscale as well as color images.
Receptive fields learned via masked regression have a very
intuitive interpretation which is further exploited to refine
the output images.

Beyond the basic Masked Regression (MR) algorithm,
an advanced Refined MR (RMR) algorithm is also proposed
to reduce the blurring effects. Evaluations are also performed
on out-of-dataset human photographs, pencil sketches, and
animal faces. Results demonstrate that MR and RMR suc-
cesfully synthesize the required expressions despite signif-
icant variations in the distribution of the test images com-
pared to the training datasets. Comparisons are also per-
formed on four state-of-the-art GANs including Pix2Pix, Cy-
cleGAN, StarGAN and GANimation. These GANs are able
to generate photo-realistic expressions as long as testing and
training distributions are similar. For the cases of out-of-
dataset human photographs, pencil sketches and animal faces,
these GANs exhibited degraded performance. In contrast,
the proposed algorithm was able to generate quite satisfac-
tory expressions in these cases as well. Therefore, the pro-
posed algorithms generalize well compared to the current
state-of-the-art facial expression synthesis methods.

As a future research direction, we suggest integration
of the proposed MR and RMR algorithms within current-
state-of-the-art GANs such as CycleGAN and StarGAN so
that the resulting algorithm generalizes well on the out-of-
dataset images and at the same time should be able to syn-
thesize photo-realistic images. In addition, redundancy among

different facial expressions can be exploited by learning a
single weight matrix for all expressions. This is exploited
by both StarGAN and GANimation to increase their training
set from just source and target expressions to all available
expressions. The proposed MR method can be extended in
a similar fashion. Another future research direction is to ex-
plore generation of expressions with varying intensity levels.
Expression intensity may be handled by learning discrete
expression mappings corresponding to targets with different
intensities. A continuous expression intensity map may be
obtained by interpolating between discrete intensity levels.
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