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Introduction

Facial expression synthesis (FES) has achieved remarkable advances
with the advent of Generative Adversarial Networks (GANs).

GAN-based FES models limitations:
1 Generate photo-realistic results as long as testing images are similar to

training images.

2 Require thousands of images for training.

3 Higher computational and storage resources at testing time.
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Motivation

Recently, Masked Regression (MR)1 has shown that
facial expressions usually constitute local instead of global changes
transformation from neutral to happy mostly affects the regions
around the eyes, nose and mouth to induce happy expression.

1Nazar Khan et al. (2020). “Masked Linear Regression for Learning Local Receptive
Fields for Facial Expression Synthesis.” In: International Journal of Computer Vision
128.5, pp. 1433–1454.
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Motivation by MR

We propose a regression-based method that looks at only one fixed
input pixel to produce an output pixel.
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Contributions

First pixel-based ridge regression method to solve the FES problem.

Pixel-based idea can be extended using kernel regression.
The proposed method

1 generalizes much better for a variety of out-of-dataset images.
2 is two orders of magnitude smaller than GAN-based models.
3 can be deployed in mobile devices and embedded systems.
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Ridge Regression (RR)

The output of pth pixel is produced
by looking at all input pixels.
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Masked Regression (MR)

The output of pth pixel is
produced by looking at a local
patch of input pixels.
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Pixel-based Ridge Regression (Pixel-RR)

The output of pth pixel is
produced by looking at only one
input pixel.
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Pixel-RR

Objective function for Pixel-RR

E (wp , bp) =
1

2
‖wpxp + bp1 − tp‖22 +
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2
(w2
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Scalars wp and bp are learnable weight and bias values.
xp and tp ∈ R1×N .
Unique global minimizers can be computed as[
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Pixel-based Kernel Regression (Pixel-KR)

Pixel-based mapping idea can be extended by using kernel regression.

E(cp) =
1

2
‖cpφ(xp)

Tφ(xp)− tp‖22 +
λ

2
‖cpφ(xp)

T‖22

=
1

2
‖cpKp − tp‖22 +

λ

2
cpKpcT

p

Kp = φ(xp)
Tφ(xp) ∈ RN×N is the kernel matrix.

Projection matrix cp ∈ R1×N can be computed as:

cp = tp(Kp + λI)−1
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Results



Qualitative results on in-dataset images
Input StarGAN GANimation MR Pixel-RR
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Qualitative results on out-of-dataset images

Input StarGAN GANimation MR Pixel-RR
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MR vs Pixel-RR

MR Pixel-RR
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MR vs Pixel-RR

MR Pixel-RR
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Comparison of different FES models sizes

Parameters ×104

StarGAN2 850
GANimation3 850
MR4 16.2
Pixel-KR 655
Pixel-RR 3.28

2Yunjey Choi et al. (2018). “StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation.”
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797.

3Albert Pumarola et al. (2020). “GANimation: One-shot anatomically consistent facial animation.” In: International Journal
of Computer Vision 128.3, pp. 698–713.

4Nazar Khan et al. (2020). “Masked Linear Regression for Learning Local Receptive Fields for Facial Expression Synthesis.”
In: International Journal of Computer Vision 128.5, pp. 1433–1454.
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User study to evaluate expressions

Evaluators were asked to choose the best synthesized happy image
considering

perceptual quality
expression realism
identity preservation

Model Neutral → Happy
GANimation 26%

MR 17%
Pixel-RR 57%
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Expression classification accuracy

A pre-trained5 expression classifier is used to classify the synthesized
happy images.

Model Accuracy
GANimation 68%

MR 84%
Pixel-RR 85%

5https://github.com/thoughtworksarts/EmoPy
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Conclusion

We have presented a novel and simple Pixel-RR model for FES.

Considers only one input pixel to produce an output pixel.
Promising results on in-dataset and out-of-dataset images as
compared to state-of-the-art GAN models.
Requires two orders of magnitude fewer parameters.
Can be deployed in mobile devices and embedded systems.

Thank you for your attention.
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