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Facial expression synthesis (FES)

FES: Synthesis of a new expression on a given face.

W−−−−−→

How can we learn the transformation W ?
Can we do it using a linear transformation (aka no deep learning)?



3/58

FES Regression MR Local vs Sparse Intuitions Generalization Refinement GANs Conclusion References

We present an FES method with the following contributions:

1 Convex optimization with closed-form solution of global
minimum in a single iteration.

2 Extremely low spatial and computational complexity.

3 Trainable on very small datasets.

4 Intuitive interpretation of learned parameters can be exploited
to improve results.

5 Good generalization over different types of images that
state-of-the-art GANs find very challenging to synthesize.



4/58

FES Regression MR Local vs Sparse Intuitions Generalization Refinement GANs Conclusion References

Related Work

Basis learning (Blanz, Vetter, et al. 1999)

Active appearance models (Cootes, Edwards, Taylor, et al.
2001)

Deep belief nets (Susskind et al. 2008)

Kernel regression (Huang and De la Torre 2010)

GANs for image-to-image translation

Pix2Pix (Isola et al. 2017)
CycleGAN (Zhu et al. 2017)
StarGAN (Choi et al. 2018)
GANimation (Pumarola et al. 2019)
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Regression

Let x ∈ RD be a vectorized input image.

Let y ∈ RK be a vectorized output image.

Standard linear regression (`2) models output as y = W x
where W ∈ RK×D is a transformation matrix.

This model corresponds to global receptive fields.

Each output pixel is produced by looking at all input pixels.
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`2-regression – error formulation

ERR(W ) =
1

2
||WXT − TT ||2F +

λ2

2
||W ||2F (1)

X ∈ RN×D and T ∈ RN×K are the design matrices of
vectorized input and target images respectively.

Regularization parameter λ2 > 0 controls over-fitting and
|| · ||2F is the squared Frobenious norm of a matrix.

This is a quadratic optimization problem with a global
minimizer obtained in closed-form as

W RR = ((XTX + λ2I )
−1XTT )T (2)



Do all pixels determine expression?

Expression=? Expression=?
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Neutral Happy

Is there any benefit of looking at forehead pixels to generate
smiling lips?

Happy lips can be generated by looking at and transforming
lips.

Happy eyes can be generated by looking at and transforming
eyes.

So why carry so many parameters in W ?
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Expressions are local

Transformation from one facial expression to another depends
more on local information and less on global information.

Facial expressions often constitute sparsely distributed and
locally correlated changes.

Neutral Happy
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Masked Regression

We propose a Masked Regression (MR)1 model
y = (W ◦M)x where binary matrix M contains 1s only for
locations that need to be looked at.
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If mij = 0, then output pixel yi is produced without looking at
input pixel xj .

1N. Khan et al. “Masked Linear Regression for Learning Local Receptive
Fields for Facial Expression Synthesis”. In: International Journal of Computer
Vision (IJCV) (2019).



Linear Regression:

yi =
D∑
j=1

wijxj (3)

Masked Regression:

yi =
∑
mij=1

wijxj (4)

If yi is formed by looking at a 3× 3 region in the input image, then
the summation in MR is only over 9 pixels, irrespective of image
size.

This corresponds to having local receptive fields.
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Input pixel index j in row-major order
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1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
...

...
19 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1
21 1 1 1 1
22 1 1 1 1 1 1
23 1 1 1 1 1 1
24 1 1 1 1 1 1
25 1 1 1 1

Figure: Mask M corresponding to input image of size 5× 5, output image
of size 5× 5 and receptive fields of size 3× 3. For clarity, entries equal to
0 are left blank. If the entry at row i and column j is 1, then output pixel
i has input pixel j in its receptive field.
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Benefit of using mask
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Local receptive fields remain practical for larger image sizes.

Regression with global receptive fields becomes impractical
even for image sizes as small as 128× 128 pixels.
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Benefit of using mask

Proposed Pix2Pix CycleGAN StarGAN GANimation

Size (×104) 1.68 4100 780 850 850

Time (msec) 2.70 320 710 580 507

Comparison of MR with 4 state-of-the-art GAN architectures

MR has more than two orders of magnitude fewer number of
parameters than each of these GANs.

MR is more than two orders of magnitude faster in
synthesizing an expression.



15/58

FES Regression MR Local vs Sparse Intuitions Generalization Refinement GANs Conclusion References

Masked Regression – error formulation

The error function for Masked Regression can be written as

EMR(W ) =
1

2
||(W ◦M)XT − TT ||2F +

λM
2
||W ◦M||2F (5)

Only those weights are learned for which mij = 1. The rest are
fixed to 0.

Closed-form solution cannot be obtained due to the
Hadamard product.
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Masked Regression – error formulation

Per-pixel decomposition

EMR(W ) =
K∑
i=1

EMR(W i ) (6)

where

EMR(W i ) =
1

2
||(W i ◦M i )XT − TT

i ||22 +
λM
2
||W i ◦M i ||22

(7)

where W i is the i-th row of W .

Gradient and Hessian computations are a bit involved (refer to
paper (Khan et al. 2019)).

Globally optimal W i can now be computed in
closed-form.
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Masked Regression – error formulation

For receptive field of size r × r , the i-th row of W can be
computed independently by solving a linear system in r2

unknowns.

Linear regression would require solving a linear system in D2

unknowns and D2 � r2.

Example: for 128× 128 images and 3× 3 receptive fields,
D2 = 1284 and r2 = 9.
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Dilated receptive fields

The proposed method can be easily modified to have
not-so-local receptive fields.

We use dilated receptive fields to observe larger input regions
using the same number of weights.

This helps to avoid over-fitting by limiting the complexity of
the model.

3× 3 5× 5 7× 7
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Local vs Sparse

Local receptive fields can be viewed as extremely sparse
receptive fields with manually designed and fixed localizations.

Alternative: learn sparse receptive fields.

Will a sparsely learned topology also converge to our
local receptive fields?



20/58

FES Regression MR Local vs Sparse Intuitions Generalization Refinement GANs Conclusion References

Local vs Sparse

To answer this question we learn the receptive field W i for
each output pixel by minimizing the `1-regularized sum of
squared errors

min
W i

1

2
||XW i − Ti ||22 + λ1||W i ||1 (8)

using the LASSO algorithm2.

We also learn by minimizing the `0-regularized sum of squared
errors

min
W i

1

2
||XW i − Ti ||22 s.t. ||W i ||0 ≤ λ0 (9)

using the OMP algorithm3.

2Tibshirani 1996.
3Pati, Rezaiifar, and Krishnaprasad 1993.
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Experiments

We combine three datasets

KDEF (Lundqvist, Flykt, and Öhman 1998)
Bosphorous (Savran et al. 2008)
JAFFE (Lyons et al. 1998)

Expressions include neutral, afraid, angry, disgusted, happy,
sad and surprised.

Total 1116 facial expression images.

Approximately only 200 images per-mapping.

80%, 10%, 10% split into training, validation and testing sets.

All faces are aligned with respect to a reference face image.

Pixel values normalized between 0 and 1.

Hyperparameters were cross-validated.



Global Local
Input PCA `2 BKRRR `0 `1 MR Target

Figure: MR sucessfully sntesized a happy expression while preserving
identity and retaining facial details the most.
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Neutral Afraid Angry Disgusted Happy Sad Surprised

Figure: For each neutral input, MR effectively transformed into 6
different expressions while preserving identities and facial details.
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PCA `2 BKRRR `0 `1 MR3 MR5 MR7 MR9
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Figure: MSE for different methods averaged over 12 expression mappings.
Employing too large a receptive field increased the MSE since long-range
receptive fields fail to capture the local nature of facial expressions.
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Training times and Sparsity

Table: Comparison of training times in seconds averaged over 12 different
expression mappings.

MR `1 `0 `2

0.010 16.782 0.237 0.115

MR models were twice as sparse as the best cross-validated
`1-regression models.
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Role of weights and biases

x Wx Wx+ b x Wx Wx+ b

Grayscale synthesis Color synthesis

Weights are predominantly used to transform the visible parts
of the input expression into the target.

Biases are used to insert hidden information such as teeth for
a happy expression.



Over 12 expression mappings, we compare the average absolute
intensity of the transformation produced by the weights with the
additive transformation learned as biases.

`2-regression Masked regression

Bias often dominated the weights. Weights ∼5 times as important as bias.

Leads to loss of identity. Leads to better identity preservation.
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Input `2 `0 `1 MR3 Target

Figure: MR preserves background and other details unrelated to the
desired expression.
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Input `2 `0 `1 MR3 Target

Input `2 `0 `1 MR3 Target

Figure: MR preserves background and other details unrelated to the
desired expression.
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MR for color images

ECMR(W ) =
1

2

C∑
c=1

||(W ◦M)XT
c − TT

c ||2F +
λM
2
||W ◦M||2F (10)

Gray MR
Input Per-channel MR Replicated Vector MR

Figure: Regression on color tuples leads to lesser color leakage compared
to separate regressions on each channel.
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MR on non-frontal faces

Input Synthesized Target Input Synthesized Target Input Synthesized Target

Figure: FES on non-frontal faces.
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Out-of-dataset generalization

MR is most effective for out-of dataset images.

Images not belonging to any of the datasets used for training,
validation and testing.

Such images belong to significantly different distributions
compared to training distribution.

Three categories
1 People
2 Sketch drawings
3 Animals
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Refinement

MR adjusts weights according to whether a particular pixel is
relevant for a particular expression.

For generating happy expressions, an output pixel looking at
the mouth might have a greater role than a pixel looking at
the forehead.

We compute the ego of each output pixel as follows
1 Compute `1-norm of each pixel’s receptive field, i.e. |W i |1.
2 Compute mean and standard deviation of these norms.
3 Standardize to obtain z-scores. High score =⇒ atypical field.
4 Dilate with disk to expand influence of atypical receptive fields.
5 Post-process and scale between 0 and 1.



αAfraid αAngry αDisgusted αHappy αSad αSurprised

Figure: Top: Role of each pixel for expression generation. Higher
intensity implies greater role. The role of the i-th pixel is computed
entirely from its learned receptive field W i . Bottom: Using different
dilation and post-processing parameters.

y′ = (1−α) ◦ x + α ◦ y (11)
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GAN comparisons

We compare with 4 state-of-the-art GANs used for
image-to-image translation tasks.

GANs produce sharp photo-realistic results.

Good results as long as test image belongs to the same
distribution as training images.

Poor out-of-dataset generalization.
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Out-of-dataset images (sketches and animals)
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Out-of-dataset images (people)
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Input Afraid Angry Disgusted Happy Sad Surprised
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Quantitative comparison with GANs

Table: Drop in expression recognition accuracy (in percentage points)
when changing from test set images to out-of-dataset images.

Pix2Pix CycleGAN StarGAN GANimation MR

35.72 16.39 21.43 20.74 12.39
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Conclusion

Constrained version of ridge regression for local receptive
fields.

Efficient closed-form solution of global minimum.

Excellent learning ability on very small datasets despite
simplicity.

Easy implementation and extremely fast training.

Better generalization despite using small training datasets.

Extremely small model size.

Intuitive interpretation of receptive fields exploited to refine
results.

Better out-of-dataset generalization compared to
state-of-the-art GANs.
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