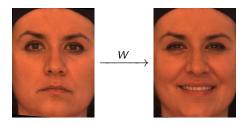
Masked Linear Regression for Learning Local Receptive Fields for Facial Expression Synthesis

Nazar Khan Arbish Akram Arif Mahmood Sania Ashraf Kashif Murtaza

> Invited Talk at ITU, Lahore, Pakistan 15th October 2019

Facial expression synthesis (FES)

FES: Synthesis of a new expression on a given face.



How can we *learn* the transformation W? Can we do it using a *linear* transformation (aka no deep learning)?

- Convex optimization with closed-form solution of global minimum in a single iteration.
- Extremely low spatial and computational complexity.
- Trainable on very small datasets.
- Intuitive interpretation of learned parameters can be exploited to improve results.
- 6 Good generalization over different types of images that state-of-the-art GANs find very challenging to synthesize.

Related Work

- Basis learning (Blanz, Vetter, et al. 1999)
- Active appearance models (Cootes, Edwards, Taylor, et al. 2001)
- Deep belief nets (Susskind et al. 2008)
- Kernel regression (Huang and De la Torre 2010)
- GANs for image-to-image translation
 - Pix2Pix (Isola et al. 2017)
 - CycleGAN (Zhu et al. 2017)
 - StarGAN (Choi et al. 2018)
 - GANimation (Pumarola et al. 2019)

Regression

- Let $\mathbf{x} \in \mathbb{R}^D$ be a vectorized input image.
- Let $\mathbf{y} \in \mathbb{R}^K$ be a vectorized output image.
- Standard linear regression (ℓ_2) models output as $\mathbf{y} = W\mathbf{x}$ where $W \in \mathbb{R}^{K \times D}$ is a transformation matrix.
- This model corresponds to global receptive fields.
- Each output pixel is produced by *looking at* all input pixels.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_K \end{bmatrix} = \begin{bmatrix} w_{11} & \dots & w_{1D} \\ w_{21} & \dots & w_{2D} \\ & \vdots \\ w_{K1} & \dots & w_{KD} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix}$$
Global

ℓ_2 -regression – error formulation

$$E^{RR}(W) = \frac{1}{2}||WX^{T} - T^{T}||_{F}^{2} + \frac{\lambda_{2}}{2}||W||_{F}^{2}$$
 (1)

- $X \in \mathbb{R}^{N \times D}$ and $T \in \mathbb{R}^{N \times K}$ are the design matrices of vectorized input and target images respectively.
- Regularization parameter $\lambda_2 > 0$ controls over-fitting and $||\cdot||_F^2$ is the squared Frobenious norm of a matrix.
- This is a quadratic optimization problem with a global minimizer obtained in closed-form as

$$W^{RR} = ((X^T X + \lambda_2 I)^{-1} X^T T)^T$$
 (2)

Do all pixels determine expression?

Expression=? Expression=?

Neutral

Нарру

- Is there any benefit of looking at forehead pixels to generate smiling lips?
- Happy lips can be generated by looking at and transforming lips.
- Happy eyes can be generated by looking at and transforming eyes.
- So why carry so many parameters in *W*?

Expressions are local

- Transformation from one facial expression to another depends more on local information and less on global information.
- Facial expressions often constitute sparsely distributed and locally correlated changes.

Нарру

Masked Regression

We propose a Masked Regression (MR)¹ model
 y = (W ∘ M)x where binary matrix M contains 1s only for locations that need to be looked at.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_K \end{bmatrix} = \begin{bmatrix} w_{11}m_{11} & \dots & w_{1D}m_{1D} \\ w_{21}m_{21} & \dots & w_{2D}m_{2D} \\ \vdots \\ w_{K1}m_{K1} & \dots & w_{KD}m_{KD} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix}$$
Local

• If $m_{ij} = 0$, then output pixel y_i is produced without looking at input pixel x_j .

¹N. Khan et al. "Masked Linear Regression for Learning Local Receptive Fields for Facial Expression Synthesis". In: *International Journal of Computer Vision (IJCV)* (2019).

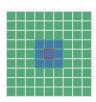
Linear Regression:

$$y_i = \sum_{j=1}^D w_{ij} x_j \tag{3}$$

Masked Regression:

$$y_i = \sum_{m_{ii}=1} w_{ij} x_j \tag{4}$$

If y_i is formed by looking at a 3×3 region in the input image, then the summation in MR is only over 9 pixels, irrespective of image size.

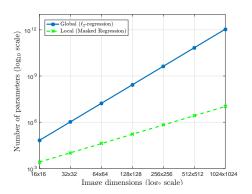


This corresponds to having local receptive fields.

									In	pu	t pi	xel	ind	ex j	in	row	-ma	ijor	ord	ler						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	1	1	1				1	1																		
order	2	1	1	1			1	1	1																	
	3		1	1	1			1	1	1																
	4			1	1	1			1	1	1															
ö	5				1	1				1	1															
Output pixel index i in row-major order	6	1	1				1	1				1	1													
	7	1	1	1			1	1	1			1	1	1												
	8		1	1	1			1	1	1			1	1	1											
Ξ.	9			1	1	1			1	1	1			1	1	1										
i X	:																									
υğ														_		:			_	_	_					_
-	19													1	1	1			1	1	1			1	1	1
.×	20														1	1				1	1				1	1
ıt p	21																1	1				1	1			
Ψ	22																1	1	1			1	1	1		
õ	23																	1	1	1			1	1	1	
	24																		1	1	1			1	1	1
	25																			1	1				1	1

Figure: Mask M corresponding to input image of size 5×5 , output image of size 5×5 and receptive fields of size 3×3 . For clarity, entries equal to 0 are left blank. If the entry at row i and column j is 1, then output pixel i has input pixel j in its receptive field.

Benefit of using mask



- Local receptive fields remain practical for larger image sizes.
- \bullet Regression with global receptive fields becomes impractical even for image sizes as small as 128 \times 128 pixels.

Benefit of using mask

	Proposed	Pix2Pix	CycleGAN	StarGAN	GANimation
Size (×10 ⁴)	1.68	4100	780	850	850
Time (msec)	2.70	320	710	580	507

- Comparison of MR with 4 state-of-the-art GAN architectures
- MR has more than two orders of magnitude fewer number of parameters than each of these GANs.
- MR is more than two orders of magnitude faster in synthesizing an expression.

Masked Regression – error formulation

• The error function for Masked Regression can be written as

$$E^{MR}(W) = \frac{1}{2}||(W \circ M)X^{T} - T^{T}||_{F}^{2} + \frac{\lambda_{M}}{2}||W \circ M||_{F}^{2} \quad (5)$$

- Only those weights are learned for which $m_{ij} = 1$. The rest are fixed to 0.
- Closed-form solution cannot be obtained due to the Hadamard product.

Masked Regression – error formulation

Per-pixel decomposition

$$E^{\mathsf{MR}}(W) = \sum_{i=1}^{K} E^{\mathsf{MR}}(W^{i}) \tag{6}$$

where

$$E^{MR}(W^{i}) = \frac{1}{2} ||(W^{i} \circ M^{i})X^{T} - T_{i}^{T}||_{2}^{2} + \frac{\lambda_{M}}{2} ||W^{i} \circ M^{i}||_{2}^{2}$$
(7)

where W^i is the i-th row of W.

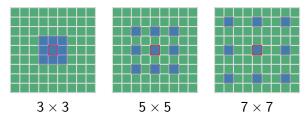
- Gradient and Hessian computations are a bit involved (refer to paper (Khan et al. 2019)).
- Globally optimal Wⁱ can now be computed in closed-form.

Masked Regression – error formulation

- For receptive field of size $r \times r$, the i-th row of W can be computed independently by solving a linear system in r^2 unknowns.
- Linear regression would require solving a linear system in D^2 unknowns and $D^2 \gg r^2$.
- Example: for 128×128 images and 3×3 receptive fields, $D^2 = 128^4$ and $r^2 = 9$.

Dilated receptive fields

- The proposed method can be easily modified to have not-so-local receptive fields.
- We use dilated receptive fields to observe larger input regions using the same number of weights.
- This helps to avoid over-fitting by limiting the complexity of the model.



Local vs Sparse

- Local receptive fields can be viewed as extremely sparse receptive fields with manually designed and fixed localizations.
- Alternative: learn sparse receptive fields.
- Will a sparsely learned topology also converge to our local receptive fields?

Local vs Sparse

• To answer this question we learn the receptive field W^i for each output pixel by minimizing the ℓ_1 -regularized sum of squared errors

$$\min_{W^i} \frac{1}{2} ||XW^i - T_i||_2^2 + \lambda_1 ||W^i||_1 \tag{8}$$

using the LASSO algorithm².

• We also learn by minimizing the ℓ_0 -regularized sum of squared errors

$$\min_{W^i} \frac{1}{2} ||XW^i - T_i||_2^2 \text{ s.t. } ||W^i||_0 \le \lambda_0$$
 (9)

using the OMP algorithm³.

²Tibshirani 1996.

Experiments

- We combine three datasets
 - KDEF (Lundqvist, Flykt, and Ohman 1998)
 - Bosphorous (Savran et al. 2008)
 - JAFFE (Lyons et al. 1998)
- Expressions include neutral, afraid, angry, disgusted, happy, sad and surprised.
- Total 1116 facial expression images.
- Approximately only 200 images per-mapping.
- 80%, 10%, 10% split into training, validation and testing sets.
- All faces are aligned with respect to a reference face image.
- Pixel values normalized between 0 and 1.
- Hyperparameters were cross-validated.

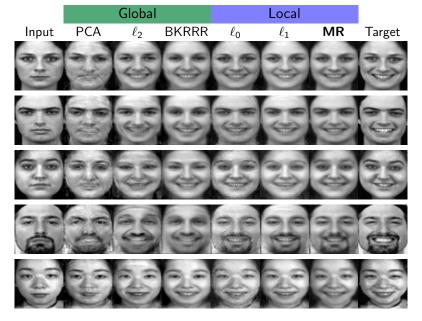


Figure: MR successfully sntesized a happy expression while preserving identity and retaining facial details the most.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

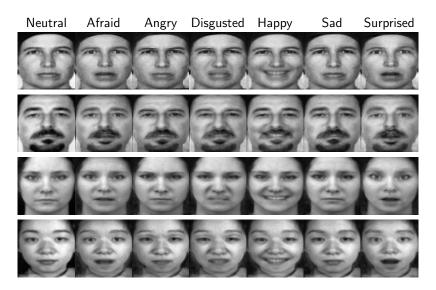


Figure: For each neutral input, MR effectively transformed into 6 different expressions while preserving identities and facial details.

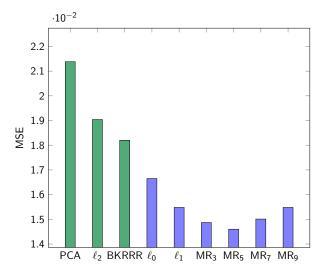


Figure: MSE for different methods averaged over 12 expression mappings. Employing too large a receptive field increased the MSE since long-range receptive fields fail to capture the local nature of facial expressions.

Training times and Sparsity

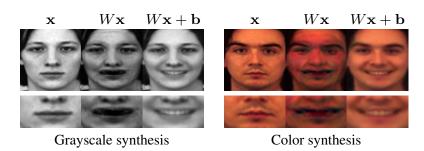
Table: Comparison of training times in seconds averaged over 12 different expression mappings.

$$\frac{\mathsf{MR}}{\mathsf{0.010}} \ \frac{\ell_1}{\mathsf{16.782}} \ \frac{\ell_0}{\mathsf{0.237}} \ \frac{\ell_2}{\mathsf{0.115}}$$

MR models were *twice* as sparse as the best cross-validated ℓ_1 -regression models.

Learned Biases

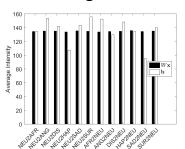
Role of weights and biases



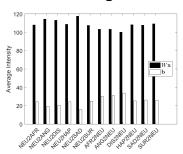
- Weights are predominantly used to transform the visible parts of the input expression into the target.
- Biases are used to insert hidden information such as teeth for a happy expression.

Over 12 expression mappings, we compare the average absolute intensity of the transformation produced by the weights with the additive transformation learned as biases.

ℓ_2 -regression



Masked regression



Bias often dominated the weights. Weights $\sim\!\!5$ times as important as bias. Leads to loss of identity. Leads to better identity preservation.

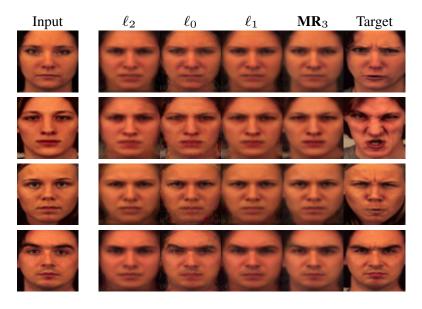


Figure: MR preserves background and other details unrelated to the desired expression.

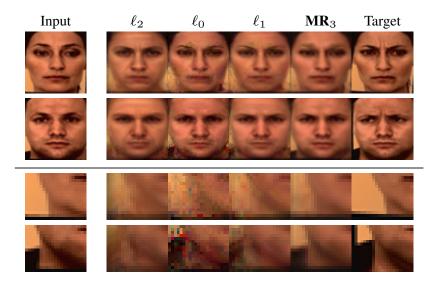


Figure: MR preserves background and other details unrelated to the desired expression.

MR for color images

$$E^{\text{CMR}}(W) = \frac{1}{2} \sum_{c=1}^{C} ||(W \circ M) X_c^T - T_c^T||_F^2 + \frac{\lambda_M}{2} ||W \circ M||_F^2 \quad (10)$$

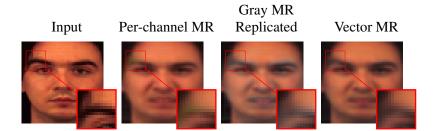


Figure: Regression on color tuples leads to lesser color leakage compared to separate regressions on each channel.

MR on non-frontal faces

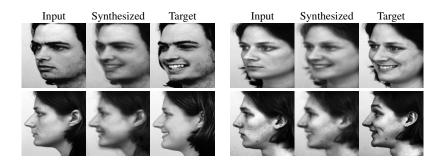
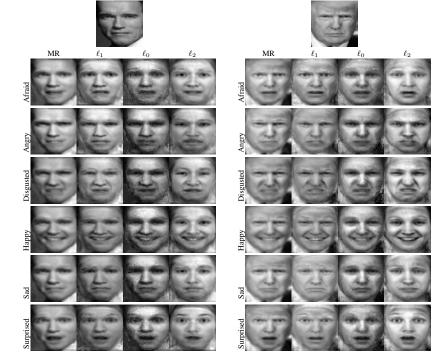
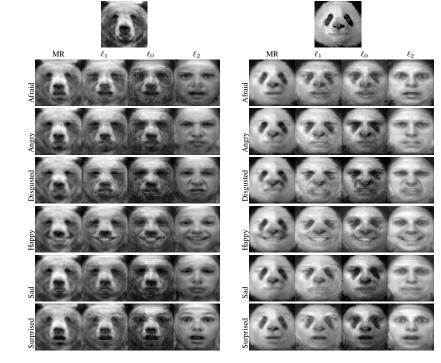


Figure: FES on non-frontal faces.

Out-of-dataset generalization

- MR is most effective for out-of dataset images.
- Images not belonging to any of the datasets used for training, validation and testing.
- Such images belong to significantly different distributions compared to training distribution.
- Three categories
 - People
 - Sketch drawings
 - Animals





Refinement

- MR adjusts weights according to whether a particular pixel is relevant for a particular expression.
- For generating happy expressions, an output pixel looking at the mouth might have a greater role than a pixel looking at the forehead.
- We compute the ego of each output pixel as follows
 - **①** Compute ℓ_1 -norm of each pixel's receptive field, i.e. $|W^i|_1$.
 - 2 Compute mean and standard deviation of these norms.
 - lacktriangledown Standardize to obtain z-scores. High score \implies atypical field.
 - Oilate with disk to expand influence of atypical receptive fields.
 - Ost-process and scale between 0 and 1.

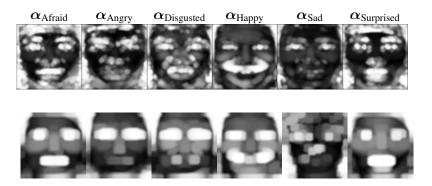
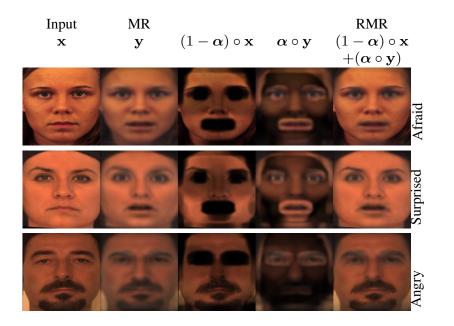
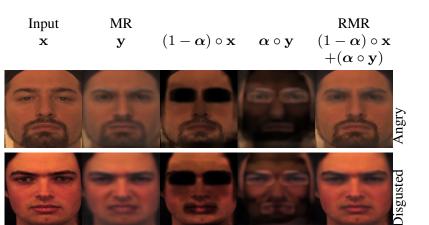
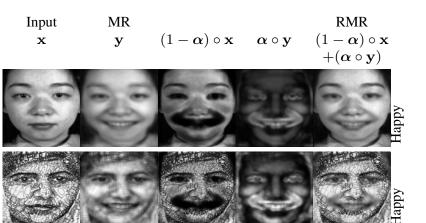


Figure: **Top**: Role of each pixel for expression generation. Higher intensity implies greater role. The role of the i-th pixel is computed entirely from its learned receptive field W^i . **Bottom**: Using different dilation and post-processing parameters.

$$\mathbf{y}' = (1 - \alpha) \circ \mathbf{x} + \alpha \circ \mathbf{y} \tag{11}$$







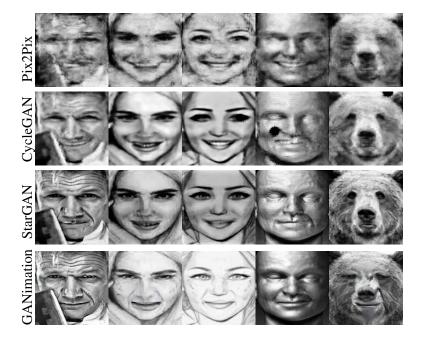
GAN comparisons

- We compare with 4 state-of-the-art GANs used for image-to-image translation tasks.
- GANs produce sharp photo-realistic results.
- Good results as long as test image belongs to the same distribution as training images.
- Poor out-of-dataset generalization.

In-dataset images



Out-of-dataset images (sketches and animals)



Out-of-dataset images (people)

Quantitative comparison with GANs

Table: Drop in expression recognition accuracy (in percentage points) when changing from test set images to out-of-dataset images.

Pix2Pix	CycleGAN	${\sf StarGAN}$	${\sf GAN} imation$	MR
35.72	16.39	21.43	20.74	12.39

Conclusion

- Constrained version of ridge regression for local receptive fields.
- Efficient closed-form solution of global minimum.
- Excellent learning ability on very small datasets despite simplicity.
- Easy implementation and extremely fast training.
- Better generalization despite using small training datasets.
- Extremely small model size.
- Intuitive interpretation of receptive fields exploited to refine results.
- Better out-of-dataset generalization compared to state-of-the-art GANs.

References I

Volker Blanz, Thomas Vetter, et al. "A morphable model for the synthesis of 3D faces.". In: *SIGGRAPH*. Vol. 99. 1999. 1999, pp. 187–194.

Timothy F Cootes, Gareth J Edwards, Christopher J Taylor, et al. "Active appearance models". In: *IEEE Transactions on Pattern Analysis* and Machine Intelligence 23.6 (2001), pp. 681–685.

Yunjey Choi et al. "StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation". In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018, pp. 8789–8797.

References II

Dong Huang and Fernando De la Torre. "Bilinear kernel reduced rank regression for facial expression synthesis". In: *European Conference on Computer Vision*. Springer. 2010, pp. 364–377.

Phillip Isola et al. "Image-to-image translation with conditional adversarial networks". In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017, pp. 1125–1134.

N. Khan et al. "Masked Linear Regression for Learning Local Receptive Fields for Facial Expression Synthesis". In: *International Journal of Computer Vision (IJCV)* (2019).

References III

D. Lundqvist, A. Flykt, and A. Öhman. *The Karolinska Directed Emotional Faces - KDEF, CD ROM.* Stockholm, Sweden: Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, 1998. ISBN: 91-630-7164-9.

Michael Lyons et al. "Coding facial expressions with Gabor wavelets". In: *Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition*. IEEE. 1998, pp. 200–205.

References IV

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. "Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition". In: *Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.* Nov. 1993, 40–44 vol.1.

A. Pumarola et al. "GANimation: One-Shot Anatomically Consistent Facial Animation". In: International Journal of Computer Vision (IJCV) (2019).

Arman Savran et al. "Bosphorus database for 3D face analysis". In: *European Workshop on Biometrics and Identity Management*. Springer. 2008, pp. 47–56.

References V

Joshua M Susskind et al. "Generating facial expressions with deep belief nets". In: *Affective Computing*. Ed. by Jimmy Or. InTech, 2008. Chap. 10, pp. 421–440.

Robert Tibshirani. "Regression shrinkage and selection via the lasso". In: Journal of the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

Jun-Yan Zhu et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks". In: *Proceedings of the IEEE International Conference on Computer Vision*. 2017, pp. 2223–2232.

Questions?

