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Abstract. Existing line segment detectors tend to break up perceptually distinct line segments into multiple seg-
ments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate
line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity.
Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are succes-
sively merged to form a single line segment. This process is repeated until no more line segments can be
merged. We also propose a method for quantitative comparison of line segment detection algorithms.
Results on the York Urban dataset show that our merged line segments are closer to human-marked
ground-truth line segments compared to state-of-the-art line segment detection algorithms. © 2016 SPIE and
IS&T [DOI: 10.1117/1.JEI.25.6.061620]
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1 Introduction
Line segments play an important role in perception and
analysis of images by providing information about object
boundaries and scene geometry. High-level vision applica-
tions such as stereo matching,1 three-dimensional (3-D)
reconstruction,2 and vanishing point estimation3 use line seg-
ments as the initial low-level features. However, existing line
segment detection techniques have three major weaknesses:

1. For single pixel thick line segments in images, they
detect two segments instead of a single segment
due to gradient change on both sides of each line
segment.

2. They tend to break up a perceptually single line seg-
ment into multiple smaller line segments.

3. They break up line segments at intersections.

These weaknesses limit the applicability of line segment
detection techniques to high-level applications. If line segment
detectors start providing connected, perceptually accurate line
segments, then higher-level computer vision techniques such
as road detection3 and single view reconstruction2 can use the
line segments directly without further postprocessing.
Demonstration of visual inspection and some of the weak-
nesses of a line segment detector on a real world fence
image are presented in Fig. 1. In this paper, we propose an
algorithm that refines the output of an existing line segment
detector to obtain perceptually accurate line segments.
Numerical results show that the proposed algorithm not
only reports a fewer number of line segments but also provides
line segments that are closer to ground-truths segments
marked according to human perception.

The remaining paper is divided into five sections. A brief
overview of relevant line segment detection and grouping

techniques is presented in this section. We present our algo-
rithm in Sec. 2 followed by a technique for evaluating the
quality of merged line segments using ground-truth markings
in Sec. 3. Section 4 presents results on synthetic as well as
real images. Finally, we conclude and present future direc-
tions in Sec. 5.

1.1 Line Segment Detection Techniques
The line segment detector (LSD) by Gioi et al.4 detects line
segments by growing regions on the basis of gradient sim-
ilarity. Grown regions are passed through a validation step to
decide whether they form a line segment or not. Being gra-
dient based, LSD suffers from the usual weaknesses as enu-
merated earlier. In our work, these weaknesses are overcome
by merging detected line segments on the basis of spatial and
angular proximity.

The Edge Drawing Lines (EDLines) algorithm5 is another
technique for line segment detection in which line segments
are extracted on the basis of edge segments corresponding to
the object boundaries. A straightness criterion along with a
validation step is applied on the edge segments to get straight
line segments. EDLines claims to produce clean and con-
nected chains of edge segments. However, it does not over-
come the other two weaknesses of LSD: breaking up line
segments at intersections and giving two line segments for
a single line due to gradient change on both sides of the
line segment.

1.2 Line Segments Grouping and Merging
Techniques

Grouping and merging techniques can be loosely categorized
as top-down and bottom-up. Top-down approaches make
global grouping decisions, often based on the Hough trans-
form method, while bottom-up methods make local pairwise
decisions.
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A line grouping and merging technique6 clusters elemen-
tary line segments on the basis of angular proximity to obtain
base line segments. The base line segments are then divided
into individual line segments based on spatial proximity.
While acceptable results are shown on synthetic images,
they do not produce perceptually coherent line segments on
real images. A similar idea is presented by Jang and Hong.7

Hough transform-based line segment detection does
not consider connectivity of the segments while computing
the votes. This problem is addressed by Guerreiro and
Aguiar8 by introducing connectivity in the voting process.
This way, edge pixels vote only for the line segments to
which they are spatially connected. This leads to detection
of longer, connected, and therefore fewer line segments.
It overcomes the weakness of gradient-based line segment
detectors, such as LSD, that break up connected line seg-
ments. However, their method can still detect two line seg-
ments instead of a single line due to gradient change along
both sides of the line segment.

A method for bottom-up perceptual grouping of line
segment pairs is presented by Trucco and Verri.9 Similar to
our criteria, they make a grouping decision based on line
segment lengths, interline distances, angles, and overlaps.
They also bias the grouping toward longer line segments.
However, they do not attempt to compute the merged line
segment corresponding to a group. Our work is also different
from traditional grouping strategies in that we go one step
further than just determining constituents of the group and

we actually merge them to obtain a single line segment
that satisfies perceptual criteria. Details are presented in
the next section.

2 Methodology
Our algorithm takes as input an image and line segments
detected by an off-the-shelf line segment detector. The merg-
ing pipeline has two main steps. In the first step, we group
line segments based on traditional measures of spatial and
angular proximity:

1. Spatial proximity: line segments must be spatially
close enough to be grouped.

2. Angular proximity: orientation of line segments
should not be much different from each other.

In the second step, we consider pairs of line segments
within every group and merge them into a single line
segment if they satisfy our mergeability criteria. These two
steps are repeated until no more line segments can be
merged.

In the following, we denote the set of detected line
segments by D and the set of merged line segments by L.
For a pair of line segments ðL1; L2Þ, we denote their lengths
and angles by ðl1; l2Þ and ðθ1; θ2Þ, respectively. For any
given line segment Li, we denote its two end-points by
ðxi1; yi1Þ and ðxi2; yi2Þ. Descriptions of all user-defined as
well as adaptive thresholds and parameters are presented
in Table 1.

2.1 Step 1: Grouping Line Segments
We begin the merging process by sorting the line segments in
descending order of length, so smaller segments have less
influence on the merging process. This is because longer
line segments tend to come from image regions with contin-
uously strong gradients and therefore are more reliable.
For the longest line segment L1, a group PL1

of segments in
close angular proximity is selected as

EQ-TARGET;temp:intralink-;e001;326;122PL1
¼ ½∀ L2 ∈ L∶ðjθ2 − θ1j < τθÞ�: (1)

This filters out any segments with significantly different ori-
entation from L1. The set PL1

is further filtered using spatial

Fig. 1 Visual inspection and some of the weaknesses of an line seg-
ment detector: (a) a real world fence image. (b) The fence image con-
tains 24 straight line segments that can be identified via visual
inspection. (c) Line segment detectors will detect 48 segments for
24 visual line segments due to gradient change on both sides of
each segment. (d) Similarly the seven intersections in the fence
can be represented by 14 curved segments (two curved segments
per intersection). (e) 14 curved segments yield 28 straight line seg-
ments (two segments per curved segment). (f) Therefore, a good
line segment detector should detect 76 line segments on the fence
image.

Table 1 User-defined and adaptive thresholds and parameters.

(a) User-defined threshold and parameter.

τθ User-defined angular proximity threshold for grouping line
segments on the basis of absolute angular difference [Eq. (1)].

ξs User-defined spatial proximity parameter for computing adaptive
spatial proximity threshold τs [Eq. (4)].

(b) Adaptive thresholds.

τs Adaptive spatial proximity threshold for grouping line segments
on the basis of absolute axis-aligned distance [Eqs. (2) and (3)].

τ�θ Adaptive angular proximity threshold for merging line segment
pairs depending upon their angular difference, lengths, and
closest distance [Eqs. (7) and (8)].
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proximity. Specifically, we first find segments in PL1
with

any end-point close to any end-point of L1 in terms of
absolute distance along the horizontal axis as

EQ-TARGET;temp:intralink-;e002;63;719

PL1
¼ ½∀ L2 ∈ PL1

∶ðjx11 − x21j < τs ∨ jx11 − x22j < τs

∨ jx12 − x21j < τs ∨ jx12 − x22j < τsÞ�: (2)

This prunes out horizontally distant segments from PL1
.

Similarly, vertically distant segments can be pruned out
from the remaining segments by

EQ-TARGET;temp:intralink-;e003;326;752

PL1
¼ ½∀ L2 ∈ PL1

∶ðjy11 − y21j < τs ∨ jy11 − y22j < τs

∨ jy12 − y21j < τs ∨ jy12 − y22j < τsÞ�: (3)

These three filters yield a set PL1
of segments in close angu-

lar and spatial proximity with segment L1. The sequence
of the three filters is important in that the computationally
less expensive angular filter is applied first. In addition,
axis-aligned absolute distances are also computationally less
expensive than Euclidean distances. Finally, each segment
L2 in PL1

is considered for merging with segment L1. If
merging criteria are met, the merged segmentM immediately
replaces L1 and L2 is removed. Remaining segments in PL1

are considered for merging with the new merged segment.
Pseudocode for the overall procedure is presented in
Algorithm 1, and a visualization of the pipeline is shown
in Fig. 2.

2.1.1 Computational complexity

Upper bound of the algorithm is of order n3, where n is the
number of detected line segments. This can be understood as
follows. The algorithm terminates when the outer loop on
line 2 does not merge any pair of line segments; this consti-
tutes the best case behavior. The worst case behavior is when
this loop merges only one pair of line segments. This leaves
n − 1 remaining line segments for the next iteration of this
loop. Therefore, this loop can run n − 1 times at most. The
internal loops at lines 5 and 11 depend on the sizes of the sets
L and P, both of which are OðnÞ. Therefore, the worst case
time complexity is Oðn3Þ. Notice, however, that in practice,

Algorithm 1 mergeLines.

Data: Set of detected line segmentsD, spatial distance parameter ξs ,
and angular difference threshold τθ

Result: Set of merged line segments L

1 L←D

2 repeat

3 n←jLj

4 L ← sort lines in L in descending order of length

5 for L1 ∈ L do

6 l1←kL1k

7 τs←ξsl1 [Eq. (4)]

8 P ← lines in L with angular difference from L1 within �τθ
[Eq. (1)]

9 P ← lines in P with spatial distance from L1 within τs [Eqs. (2)
and (3)]

10 R←∅

11 for L2 ∈ P do

12 M ← mergeTwoLines ðL1; L2; ξs; τθÞ (see Algorithm 2)

13 if M ≠ ∅ then

14 L1←M

15 LðL1Þ←M (replace segment L1 in set L by the merged
segment)

16 R←R ∪ L2(mark segment L2 for removal from set L)

17 end

18 end

19 L←L \ R

20 end

21 until jLj ¼ n.

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Visualization of the merging steps of Algorithm 1. (a) Set D of
line segments detected by LSD on the fence image from Fig. 1.
(b) A selected line segment L1 (thick blue). (c) Segments with angular
proximity to L1 (thick green).(d) Set P of segments with angular as
well as spatial proximity to L1 (thick green). (e) A segment L2 selected
from P (thick green). (f) Segment M obtained by merging L1 and L2
(thick blue). (Best viewed in color.)
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the number of iterations of all three loops will be far less than
n. For example, for the first iteration of the outer loop, if 10
line segments are merged, the repeat loop will have to run
n − 10 times. If the second iterations merge 10 more line seg-
ments, the repeat loop will have to run n − 20 times and so
on. Similarly, the first for loop will not run n times after each
merging step since the size of set L keeps decreasing after
every merging. The inner-most for loop will iterate much less
than n times due to filters applied in lines 8 and 9 of the
algorithm. So the actual number of iterations of the three
loops is much less than n3.

2.2 Step 2: Merging Two Line Segments
We now describe our perceptually motivated merging criteria
for any pair of line segments. To avoid shorter line segments
from influencing the merging process, we set the longer line
segment as our reference for computing distances and adap-
tive thresholds. We allow a shorter line segment to be merged
into a longer one, but never vice versa. Therefore, without
loss of generality, we name the longer line segment L1

and shorter one L2. The geometry for two line segments
and their merging criterion is shown in Fig. 3. The closest
pair of end-points among the four intersegment pairs is
denoted by c1 and c2. The Euclidean distance between
them is denoted by d. If the closest distance d is greater
than a spatial proximity threshold τs, segments L1 and L2

are deemed to be unmergeable. Otherwise, we check sub-
sequent merging criteria that are described next.

Human perception of mergeable line segments does not
depend merely on angular and spatial proximity. We contend
that our perception also utilizes intersegment distances and
the lengths of the segments themselves. It can be seen from
Fig. 4 that perception of mergeability is inversely propor-
tional to

1. the length of the shorter line,
2. angular difference, and
3. the relative spatial distance

and is proportional to the length of the longer line segment.
Moreover, the amount of angular and spatial disparity that
can be tolerated is dependent upon the segments’ lengths.
We therefore introduce length- and distance-dependent
thresholds for making mergeability decisions. This insight
leads to adaptive thresholds and, therefore, more flexibility

in the proposed technique. This is important because incor-
rectly set thresholds are the bane of low-level vision tasks
such as ours.

Since mergeability is proportional to length l1 of the
longer segment, the threshold for spatial proximity can be
set adaptively as

EQ-TARGET;temp:intralink-;e004;326;361τs ¼ ξsl1; (4)

where 0 < ξs < 1 is a user-specified fraction. For each seg-
ment L1, the adaptive threshold τs determines the maximum
allowable value for distance d between the closest points c1
and c2. For example ξs ¼ 0.1 implies that spatial proximity
threshold for segment L1 is 10% of the length of L1.

To incorporate the inverse relationship between merge-
ability and length l2 of the shorter segment, we first normal-
ize l2 by its maximum allowable value l1. We thus obtain
normalized length

EQ-TARGET;temp:intralink-;e005;326;231̂l2 ¼
l2
l1
: (5)

Similarly, we normalize the closest distance d by its maxi-
mum allowable value τs. This gives us normalized distance

EQ-TARGET;temp:intralink-;e006;326;166d̂ ¼ d
τs
: (6)

A combined normalized length-and-distance penalty can
be computed as

EQ-TARGET;temp:intralink-;e007;326;101λ ¼ l̂2 þ d̂: (7)

Fig. 3 Merging geometry and notation. The longer line segment L1 (in
blue) is considered as the negative horizontal axis direction of a local
two-dimensional coordinate system. The shorter line segment L2 is
shown in red. The closest end-points between the two line segments
are marked with empty green circles, and the distance between them
is denoted by d . The farthest end-points between the two line seg-
ments are marked with filled black circles. Closest point of the longer
line segment is considered as the origin of the local coordinate sys-
tem. (Best viewed in color.)

(a)

(b)

(c)

Fig. 4 Perception of mergeability. Each case has two merging sce-
narios: one is closer to perception and the other is not. The longer line
segment is in blue. Potential candidates for merging with blue are the
red and green segments (both dashed and solid). Merged segments
are transparent: red is closer to perception than green. (a) Despite
having the same spatial and angular proximity as the green segment,
the red dashed segment is perceptually closer to the blue one. Due to
the shorter length of the red segment, the eventual merged segment is
closer to the blue one. (b) Despite having the same length and spatial
proximity as the green segment, the red dashed segment is percep-
tually closer to the blue one. Due to greater angular proximity of the
red segment, the eventual merged segment is closer to the blue seg-
ment. (c) Despite having the same spatial and angular proximity as
the dashed pair, the solid pair is perceptually closer. The perceptual
difference is due to the relative lengths of the longer segments in the
two pairs. Therefore, perceptual mergeability is inversely proportional
to length of the shorter segment, angular difference, and relative
spatial distance and is proportional to length of the longer segment.
(Best viewed in color.)
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The value of λ is inversely proportional to the perception of
mergeability and can vary from 0 for perceptually mergeable
segments to 2 for not so mergeable segments. For example,
when both l2 and d are small, mergeability increases and λ
decreases. Finally, this adaptive length-and-distance penalty
is used to adaptively adjust the angular difference threshold
τθ as

EQ-TARGET;temp:intralink-;e008;63;500τ�θ ¼
�
1 −

1

1þ e−2ðλ−1.5Þ

�
τθ: (8)

The behavior of the adaptive angular threshold τ�θ is shown in
Fig. 5 as a function of the penalty λ. A simple interpretation
of the function is that as the penalty λ increases, the angular
threshold decreases to make mergeability more difficult.

Segment pairs that pass the angular difference threshold
τ�θ are merged according to the merging configurations
shown in Fig. 6. All scenarios reduce to using the farthest
end-points among the four end-points of segments L1 and
L2 as the end-points of the merged segment M.

Fig. 5 Adaptive length-and-distance penalized angular threshold for
line segment pair merging. When the length l2 of the shorter line seg-
ment increases or the closest distance d between the line segments
increases, the angular threshold decreases to make merging harder.

Fig. 6 The four possible merging scenarios for a pair of line segments
and their merged results. All line pair configurations can be modeled
as one of these four scenarios. The plus and minus signs indicate on
which side of the origin a projection falls. They indicate overlap
between the two line segments. The end-points of the merged line
are marked with black circles. (Best viewed in color.)

Algorithm 2 mergeTwoLines.

Data: Lines L1 and L2, spatial distance parameter ξs , and angular
difference threshold τθ

Result: Merged line M

1 l1←kL1k

2 l2←kL2k

3 θ1←angleðL1Þ

4 θ2←angleðL2Þ

5 if l1 < l2 then

6 swap (L1; L2)

7 swap (l1; l2)

8 swap (θ1; θ2)

9 end

10 Compute c1; c2 and d according to geometry of Fig. 3

11 τs←ξsl1

12 if d > τs then

13 M←∅

14 return

15 end

16 Compute adaptive angular threshold τ�θ via Eqs. (7) and (8) (see
Fig. 5)

17 θ←jθ2 − θ1j

18 if ðθ < τ�θÞ OR ½θ > ðπ − τ�θÞ� then

19 f 1; f 2 ← end-points corresponding to appropriate black circles
from Fig. 6

20 M ← segment with end-points f 1 and f 2

21 θM ← angle ðMÞ

22 if jθ1 − θM j > 1
2 τθ then

23 M←∅

24 end

25 else

26 M←∅

27 return

28 end
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A final check is placed on the absolute angular difference
of the longer segment L1 and the merged segmentM. For the
experiments in this paper, if the angular difference is greater
than τθ∕2, we discard the merging. The extra strictness of
this threshold is to ensure that merged segments do not
stray too far from the longer segment L1. Pseudocode for
the overall algorithm for merging two line segments L1

and L2 is presented in Algorithm 2.
MATLAB® implementation of the merging pipeline with

a demo file is open to the public and freely available
at Ref. 10.

3 Quantitative Evaluation Criterion
Due to the human brain’s ability to fill gaps and insert miss-
ing information,11 qualitative evaluation of line detection
algorithms is not sufficient. The output of line segment
detectors appears better than it actually is because our
brain automatically introduces order where there is little
or no order. It connects together or fills in the broken line
segments. This can be evidenced by looking at line segments
detected by the LSD and EDLines algorithms whose

weaknesses can often be observed only by zooming into
the image (see Figs. 7–11). Due to the absence of a standard
benchmark dataset with ground-truth line segments, many
line segment extractors4,5,8 analyze their results on synthetic
images while results on real images are open to subjective
and visual evaluation. Therefore, we propose a method
for quantitative comparison of line segment detection
algorithms.

For two line segments L1 and L2, let v1 ¼
½x11; y11; x12; y12�T be the four-dimensional vector con-
structed from the end-points of L1 and similarly v2 ¼
½x21; y21; x22; y22�T from end-points of L2. Dissimilarity of
line segments L1 and L2 can be measured as

EQ-TARGET;temp:intralink-;e009;326;608δðL1; L2Þ ¼ kv1 − v2k2: (9)

Let G be the set of ground-truth line segments in an image,
and let D be any set of detected line segments. For each
ground-truth line G ∈ G, we can compute the dissimilarity
δG of line G from the most similar line in D via

1
2 345 6 78 9

10

11

12
13

14 15

16
17 181920

2122 23 24
25

26 27
28 29 30

31
32

33

34

35
36

37
38

39

40

41

42
43

44 454647 48495051 5253 5455
56 5758

59 60
61

62

63

64 6566
67

68

69

70 71 72

73

74 757677 78 7980 81
8283 84

8586 8788899091
92

93 94
95

9697

12 34 5 6 7 8910 11 12

13 141516
1718 19 20

21
22 23 24

25
26

27
28 29 30 31

32

33 343536 37383940 4142 4344

45 4647 4849 50 51 5253 54 55 56

57 585960 61 6263 64

65 6667686970
7172

73
74 7576

(a)

(b)

Fig. 7 Merging LSD output. (a) 97 line segments detected by the LSD
algorithm on the fence image from Fig. 1. (b) After merging LSD seg-
ments by our algorithm using ξs ¼ 0.05 and τθ ¼ 20 deg, only 76 per-
ceptually accurate segments remain. (Best viewed in color and by
zooming on a computer screen.)
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Fig. 8 Merging EDLines output. (a) 91 line segments detected by the
EDLines algorithm on the fence image from Fig. 1. (b) After merging
EDLines segments by our algorithm using ξs ¼ 0.05 and τθ ¼ 20 deg,
only 76 perceptually accurate line segments remain. (Best viewed in
color and by zooming on a computer screen.)
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EQ-TARGET;temp:intralink-;e010;326;752δG ¼ minL∈DδðG;LÞ
maxðkGk; kLkÞ : (10)

The overall dissimilarity measure of ground-truth line seg-
ments G from detected line segments D can be computed
by averaging the individual dissimilarity measures as

EQ-TARGET;temp:intralink-;e011;326;684δðG;DÞ ¼ 1

jGj
X
G∈G

δG: (11)

Notice that δðG;DÞ represents an asymmetric measure and
that lower values of δðG;DÞ imply that line segments in
D are closer to line segments in G. For a collection
fGn;DngN1 of ground-truth and detected sets of line segments
for N images, we can average the individual dissimilarity
measures to obtain an overall dissimilarity measure δD for
the line segment detection algorithm

12

3 4 56
7 8 9 10

11 121314 151617 1819 2021
22

23 24

25
26 272829 30 3132 33

34

35

36

37

38

39

Fig. 9 Greater abstraction of merging the line segments for the fence
image from Fig. 1. Compared to Fig. 7(b), this result is obtained by
relaxing the spatial proximity parameter ξs to 0.255 which allows
close parallel lines to become merged. (Best viewed in color.)
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Fig. 10 Merging LSD and EDLines output. (a) A synthetic image of a checkerboard containing 14 line
segments that can be identified via visual inspection. Line segment detectors that break segments at inter-
sections should detect 68 segments that can also be identified via visual inspection. (b) LSD detects 68 and
(c) EDLines detects 62 line segments. (d) After merging LSD result by our algorithm, the original 14 line
segments are recovered. Merging EDLines result also yields the same 14 line segments. Both results were
obtained using ξs ¼ 0.05 and τθ ¼ 20 deg. (Best viewed in color and by zooming on a computer screen.)
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EQ-TARGET;temp:intralink-;e012;63;381δD ¼ 1

N

XN
n¼1

δðGn;DnÞ: (12)

Our merging algorithm can be similarly evaluated by
computing δL for the collection of merged line segments
fLngN1 . The success of any merging algorithm can be mea-
sured by the ratio

EQ-TARGET;temp:intralink-;e013;63;295r ¼ δD
δL

; (13)

where D represents input line segments. A merging algo-
rithm is useful only when r > 1.

4 Results and Analysis
We have already shown in Fig. 1 that a good line segment
detector should detect 76 line segments on the fence image.
The state-of-the-art LSD algorithm12 detects 97 line seg-
ments instead of 76 as shown in Fig. 7. It detects more
line segments because it tends to break up perceptually
coherent segments. Our merging process applied on the
LSD output merges these segments to obtain the original
76 perceptually accurate line segments.

A similar analysis for the EDLines algorithm13 is shown
in Fig. 8. It should be observed that we obtain identical
merging results in Figs. 7 and 8 corresponding to two differ-
ent initial line segment detectors. This demonstrates the abil-
ity of our merging algorithm to produce consistent,

perceptually accurate results in a manner that is not overly
sensitive to the input segments.

Figures 7 and 8 show merging results for one setting of
the user-defined spatial proximity parameter ξs. By relaxing
this parameter, we can obtain greater abstraction of merging
the line segments, as shown in Fig. 9. It can be observed that
now close-lying parallel line segments and thick intersec-
tions have also been merged. Such an abstraction makes it
easier to answer questions such as how many intersections
can be seen in the fence.

Another comparison is shown in Fig. 10, which is a syn-
thetic image of a checkerboard. LSD and EDLines break line
segments at each intersection, and our algorithm merges all
the broken intersections, thus yielding 14 perceptually accu-
rate line segments.

4.1 Effect of Scaling and Noise
The effect of scaling on the fence image from Fig. 1 can be
seen in Tables 2 and 3. The adverse effect of scale on our
merging process is, in part, due to the fact that scale affects
the output of the segment detectors that we have used.
However, it should be noted that scaling does not affect
our algorithm as much as it affects the detectors. For exam-
ple, without scaling, LSD detects 97 segments. When the
image is scaled up, LSD starts detecting more segments.
However, our algorithm merges many of them to yield a
number of segments that is closer to the perceptually accu-
rate number of 76. When the image is scaled down, LSD

247 line segments(a) (b)

(c) (d)

211 line segments

Fig. 11 Line segments obtained by LSD and merged using our method on an image from York Urban
dataset. (a) LSD gives broken line segments (viewable by zooming into the image). (b) Merged LSD line
segments using our method. (c) LSD has given multiple broken line segments for a perceptually single
line segment. (d) Our merging algorithm has merged the broken line segments. (Best viewed in color.)
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detects fewer than 76 segments, and our algorithm stops the
merging process quickly since further merging would lead to
deviation from perceptual accuracy. Similar analysis holds
true for EDLines.

The effect of noise on the fence image from Fig. 1 can be
seen in Tables 4 and 5. Noise also affects our algorithm
adversely. But once again, its effect on the detectors is
more pronounced than on the merging algorithm. For the
particular case of LSD output (which happens to be highly
noise sensitive), noise causes angular and spatial differences
to be amplified for short line segments. Since such
differences are included in key merging criteria for our algo-
rithm, our performance suffers too. The EDLines algorithm
is more robust to noise. Therefore, its output requires

considerably less merging. Our algorithm automatically
adjusts and performs the appropriate level of merging.

4.2 Evaluation Using Ground-Truth Data
For numerical evaluation with human-marked ground-truths,
we have used the York Urban dataset,14 which is a collection
of 102 (45 indoor and 57 outdoor) images of urban environ-
ments with ground-truth line segment markings. The size of
each image is 640 × 480. Ground-truth line segments on
each image were manually marked with subpixel precision
using an interactive tool. Since the original work accompa-
nying the dataset focused on man-made structures such
as buildings, the ground-truth consists of line segments
representing man-made structures only. Other valid line
segments, such as those representing shadow boundaries,
are not marked in the ground-truth. As a result, the marked
ground-truth underestimates the actual number of perceptu-
ally accurate line segments. This does not, however, affect
our evaluation criterion since our eventual comparison is
between detected and merged line segments [Eq. (13)].

In Table 6, we evaluate results from LSD and our merging
algorithm applied to LSD results against ground-truth line

Table 2 Effect of scaling the fence image form Fig. 1. On the original
image size, LSD detected 97 line segments and we merged them into
76 perceptually accurate line segments (Fig. 7). When scaled up, LSD
detects more segments. Our merging algorithm using ξs ¼ 0.05 and
τθ ¼ 20 deg produces a result closer to the perceptually accurate
value of 76. When scaled down, LSD detects less than 76 segments
and our algorithm stops the merging process quickly since further
merging would lead to deviation from perceptual accuracy.

Scale factor LSD segments After merging

2 164 92

1.5 127 82

1 97 76

0.5 70 69

Table 3 Similar to Table 2, merging EDLines output either moves
toward or remains close to perceptually consistent segments.

Scale factor EDLines segments After merging

2 151 90

1.5 130 89

1 91 76

0.5 66 64

Table 4 Effect of noise on the fence image from Fig. 1. As noise
increases, LSD detects many more broken segments which our algo-
rithm using ξs ¼ 0.05 and τθ ¼ 20 deg tries to merge as much as
possible. The failure to obtain 76 perceptually accurate segments is
due to the amplification of angular disparity for shorter segments in
the presence of noise.

Variance of Gaussian noise LSD segments After merging

0.01 472 110

0.02 540 167

0.03 558 213

0.04 538 276

Table 5 Similar to Table 4. For low noise levels, EDLines output is
not disturbed and our merging using ξs ¼ 0.05 and τθ ¼ 20 deg yields
70 perceptually accurate segments. For increased noise, EDLines
starts detecting less than perceived segments and our algorithm
stops merging.

Variance of Gaussian noise EDLines segments After merging

0.01 93 76

0.10 98 72

0.50 30 30

1.00 3 3

Table 6 Merged line segments compared to LSD line segments in
terms of (a) merging success r [see Eq. (13)] and (b) average number
of line segments merged per image. The best case is highlighted in
bold. In this best case, LSD detects on average 606 line segments per
image and we merge 113 of them in 2.95 s per image on average.

τθ

ξs 1 deg 5 deg 10 deg 15 deg

(a) Merging success r

0.01 1.0584 1.0901 1.0908 1.0905

0.05 1.1306 1.1838 1.1809 1.1762

0.10 1.1691 1.1011 0.9367 0.8848

(b) Average number of segments merged per image

0.01 5 12 13 13

0.05 31 90 107 113

0.10 58 165 218 237
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segments. The table shows the merging success r computed
by our quantitative evaluation criterion. Results are shown
for 12 configurations of our user-defined spatial proximity
parameter ξs and user-defined angular threshold τθ. Results
for the best configuration are highlighted. Successful con-
figurations correspond to the ones with r > 1. For those,

it can be concluded that our method reduces the number
of segments in a way that brings the segments closer to
ground-truth that was marked according to human percep-
tion. A similar analysis on the output of EDLines on the
York Urban dataset revealed that optimal ranges for ξs and
τθ were from 0.05 to 0.1 and 1 deg to 5 deg, respectively.

Figures 11 and 12 show the weaknesses of the LSD algo-
rithm on some examples from the York Urban dataset. It can
be observed that LSD consistently breaks lines at intersec-
tions and does not yield long, contiguous line segments.
Our merging algorithm, on the other hand, merges parallel
and broken line segments to yield contiguous, perceptually
more consistent line segments.

Figure 13 shows some failure cases of our merging algo-
rithm. It can be observed that sequences of local mergings
can eventually lead to a globally incorrect line segment.
This is a trade-off between ease of local decision making
and global optimality. It can also be observed that incorrect
estimation of adaptive thresholds can cause close but percep-
tually distinct parallel segments to become merged.

5 Conclusions and Future Directions
In this paper, we have proposed a new method to refine the
output of an off-the-shelf line segment detector. Our method
extracts perceptually more meaningful line segments by
merging individual line segments. We introduce unique,
adaptive mergeabilty criterion. We have also presented a
method for evaluating line segment extractors in the presence
of ground-truth markings. Experimental results on synthetic
as well as real imagery from the York Urban dataset show
that our method yields line segments that lie much closer
to human-marked ground-truths compared to results from
two other state-of-the-art line segment detectors.

Fig. 13 Weaknesses of the merging algorithm can be seen in the
areas marked by red rectangles. (a) Nearby parallel segments that
are perceptually distinct can become merged if adaptive thresholds
are not estimated correctly. (b) Sequence of local mergings can
eventually lead to a globally incorrect line segment.

Fig. 12 LSD and merged LSD results. (a) and (d) York Urban dataset
images. (b) and (e) LSD results. The red rectangles highlight the
weakness of LSD that it breaks perceptually contiguous linear struc-
tures. (c) and (f) Merging applied on LSD results. Areas corresponding
to the red rectangles demonstrate merged segments that are more
consistent with human perception. (Best viewed in color and by zoom-
ing on a computer screen.)
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The main strengths of the proposed algorithm are as
follows:

1. Thin line segments are recovered as single line seg-
ments instead of two separate ones on each side.

2. Segments continue across intersections.
3. Long perceptually coherent segments are recovered

as such.
4. Abstraction of linear image content can be obtained by

varying user-specified parameters.

The main weaknesses are as follows:

1. Sequences of local mergings can eventually lead to a
globally incorrect merging.

2. Due to incorrect estimation of adaptive thresholds,
close but perceptually distinct parallel line segments
can become merged. Moreover, in some cases, the
direction of this merged segment can be slightly differ-
ent from the original parallel segments.

While we demonstrate on different images that the pro-
posed algorithm overcomes weaknesses of previous line
detectors, it is quite evident from our results that the merging
algorithm is missing a key proximity criterion—appearance.
The algorithm can be extended by comparing the image data
underlying the original and merged line segments. This
should improve the “blind” merging algorithm by giving it
“sight.” The weaknesses mentioned above can also be
addressed by considering appearance information.

Moreover, since our goal was to get perceptually accurate
line segments, we have compared our results with human-
marked ground-truths. An alternative method of measuring
the benefits of merging is to see how much it improves other
computer vision algorithms such as stereomatching,1 3-D
reconstruction,2 and vanishing point estimation,3 among
others.
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