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Abstract—Automated jigsaw puzzle solving is a challeng-
ing problem with numerous scientific applications. We explore
whether a Generative Adversarial Network (GAN) can output
jigsaw piece placements. State-of-the-art GANs for image-to-
image translation cannot solve the jigsaw problem in an exact
fashion. Instead of learning image-to-image mappings, we pro-
pose a novel piece-to-location mapping problem and present a
trainable generative model for producing output that can be
interpreted as the placement of jigsaw pieces. This represents
a first step in developing a complete learning-based generative
model for piece-to-location mappings. We introduce four new
evaluation measures for the quality of output locations and show
that locations generated by our model perform favorably.

Index Terms—jigsaw puzzle, generative adversarial networks,
placement vector, map processing

I. INTRODUCTION

Many scientific problems can be modelled as a jig-
saw puzzle. Some examples include protein modelling [11],
RNA/DNA modelling [17], analysis of animal behaviour [4],
image editing [6], archaeological artifact reconstruction [16]
and shredded document reconstruction [22]. The jigsaw puzzle
problem is NP-complete if piece-wise compatibility is unreli-
able [1, 8]. In [3] Bosboom et al. have shown that placing
P pieces of an edge-matching puzzle in a single row of
dimension 1× P is NP-hard.

The solution of a jigsaw puzzle involves correct placement
of the individual pieces. If every piece is indexed by a number,
the solution corresponds to a placement vector representing an
appropriate arrangement of the pieces. Different optimization
techniques such as probabilistic graphical models, genetic
algorithms and linear and quadratic programming have been
applied to automatically solve jigsaw puzzles [5, 12, 20, 28].
The output of such approaches can be viewed as a placement
vector that is optimal in some sense with respect to the input
pieces. An alternative to these approaches is to construct a
conditional model that learns the piece-to-location relation-
ship from training data. Once the conditional relationship
is learned, any random configuration of new pieces can be
directly mapped to the appropriate placement vector without
performing an expensive optimization over possible locations.
However, before attempting to learn conditional piece-to-
placement vector mappings, it is important to explore the
effectiveness of learning an unconditional model for placement
vectors alone. If an unconditional placement vector generator
can not be learned, there is little hope in learning a conditional
placement vector generator. Accordingly, this paper deals with
learning a novel model for unconditional placement vector

Fig. 1: Left: A Spilsbury jigsaw puzzle from 1776 depicting a
dissection of the kingdoms of Europe. The cartographer John
Spilsbury is credited as the inventor of such puzzles. Right:
A dissected map puzzle from 1860 by J.H. Colton.

generation. We also demonstrate the weaknesses of an end-
to-end learning model for direct piece-to-map image transfor-
mations.

Jigsaw puzzles and land maps share an interesting history.
Such puzzles were invented by the English mapmaker John
Spilsbury in the 18-th century [14] by cutting along map
boundaries with a saw and creating a puzzle. Two such puzzles
representing kingdoms of Europe and dissections of United
States are shown in Figure 1.

Constituent pieces of an artifact can be re-positioned by
specifying a placement vector representing the mapping be-
tween each piece and its placement within a grid of possible
locations. The pieces can belong to any artifact such as a
toy jigsaw puzzle, a shredded document, biological/chemical
molecules or any other kind of problem modeled as a jigsaw
puzzle problem. In this work, we describe how adversarial
learning can be used to train a model for generating placement
vectors.

The paper is organized as follows. After a summary of re-
lated approaches in Section II, we describe how unconditional
and conditional generative models can be trained through
adversarial learning in Section III. Section IV describes how
the jigsaw puzzle problem can be modelled as an image-
to-image translation task and discusses some weaknesses of
that approach. Section V describes how placement vectors
can be generated via unconditional adversarial learning. In
Section VI, we explain how to evaluate any system that
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Fig. 2: GAN training framework. The discriminator D tries to
classify generated samples as fake and real samples as real.
Both networks D and G are trained through feedback from D
as shown by dotted arrows.

claims to generate placement vectors and perform the proposed
evaluation on placement vectors generated by our method.
Finally, we present some concluding thoughts in Section VII.

II. RELATED WORK

The jigsaw puzzle problem initially attracted researchers
working on boundary and shape matching techniques [4, 1,
27]. For them, it as a good tool to evaluate the effectiveness
of their algorithms. Due to limited computational resources
and the combinatorial nature of the problem, initial attempts
involved very small jigsaw puzzles.

Jigsaw puzzle problems can be of many types depending
on the measures used to compute affinity between pieces. In
apictorial jigsaw problems, only shape information is available
[9, 1, 12]. In pictorial jigsaw problems, the contents of
individual pieces are also used [20, 5, 19]. Some methods
use both shape and content [7, 29].

Given affinities between pieces, an optimization algorithm
is employed to find the best arrangement of pieces. Previous
automated approaches have used greedy algorithms [20, 10],
global solutions using probabilistic [5] and genetic [26, 24,
23] algorithms, particle filtering [28], loop constraint [25] and
linear [32] and quadratic [2] programming.

However, all of the above-mentioned techniques are focused
on finding the optimized solution of a given jigsaw problem.
This can be a time consuming process. In this paper, we
present a novel perspective of the jigsaw problem. Instead of
optimizing for each given jigsaw problem, a parameter-based
machine learning model can be trained to output placement
vectors corresponding to input pieces. Once the model is
learned from training data, new jigsaw problems can be solved
simply and quickly via forward propagation.

III. GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) [13] have heralded
the latest revolution in machine learning. Training a GAN
involves playing a minimax game between two players. One
player is called the generator G and the other is called the dis-
criminator D. Both are usually taken to be some form of deep
neural networks. The goal of G is to generate random samples
G(z, θg) from a distribution where z is a random noise vector

and θg are trainable parameters of G. Given sample vectors,
real (x) or fake (G(z, θg)), the discriminator D outputs the
probability, D(x, θd) and D(G(z, θg), θd) respectively, of the
input sample coming from the real distribution. The parameters
θd of the discriminator are updated so as to enable D to assign
high probability D(x, θd) to real samples and low probability
D(G(z, θg), θd) to anything generated by G. Simultaneously,
the parameters θg of the generator are updated so as to generate
fake samples that obtain a high probability D(G(z, θg), θd)
from the discriminator. These competing goals turn D and G
into adversaries with the goal that eventually both will become
effective, especially G since it will start generating samples
that appear to be real. The overall training objective of GANs
is as follows

min
G

max
D

V (D,G) = Ex∼pdata
[log(D(x))]+

Ez∼pz [log(1−D(G(z)))]
(1)

D∗ = argmax
θd

V (D,G) (2)

G∗ = argmin
θg

V (D∗, G) (3)

An illustration of the training framework for GANs is shown
in Figure 2.

Conditional GANs (cGANs) [18] are an extension of GANs
which take additional information y as input. Any information
such as class labels, images or text can be given as y.
Both generator and discriminator use this information and are
therefore conditioned on it. The objective function of cGANs
is as follows

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x|y))]+

Ez∼pz(z)[log(1−D(G(z|y)))]
(4)

where the only difference is that inputs to the discriminator
and generator now include the conditioning variable y as well.
In the next section, we describe how a conditional GAN
framework can be used to solve the jigsaw puzzle problem.

IV. SOLVING THE JIGSAW VIA IMAGE-TO-IMAGE
TRANSLATION

In the jigsaw puzzle problem, we have to arrange constituent
pieces in a meaningful way. By arranging the input pieces
in the form of an unordered image, we can treat the jigsaw
puzzle problem as an image-to-image translation task. In the
image-to-image translation problem, the objective is to learn a
mapping from one category of images to another category. For
example, day images to night images. For our problem, one
can attempt to learn the mapping from images of unordered
pieces to images of ordered pieces. The training data can be
constructed using Algorithm 1.

Image-to-image translation can be effectively achieved via
the Pix2Pix framework [15] which is a variation of a cGAN.
The objective of Pix2Pix is written as

D∗ = argmax
D

V (D,G) (5)

G∗ = argmin
G

V (D∗, G) + λEx,y,z[‖y −G(x, z)‖1] (6)
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Fig. 3: Illustration of the Pix2Pix framework.

Algorithm 1 Image patch scrambling for construction of data
for training a jigsaw solver via image-to-image translation.

1: for every training image I do
2: Divide I into P non-overlapping patches
3: for K times do
4: Rearrange the pieces randomly to form an un-

ordered image I ′ of the same size as I .
5: Form training pair with input I ′ and corresponding

target I .
6: end for
7: end for

where the L1 loss encourages the generator to produce a
sample that resembles the conditioning variable y.

In most image-to-image translation problems, input and out-
put share some common features but differ in style. Therefore,
for preserving these common features, the deep neural network
used in the Pix2Pix generator G is the U-Net [21] which
is an encoder-decoder network that uses skip connections
between corresponding layers of the encoder and decoder. The
encoder takes an input image and maps it to an intermediate
representation. The skip connections allow this intermediate
representation to carry over features from the input. The
decoder then uses the intermediate representation to generate
the corresponding output image. The Pix2Pix framework is
illustrated in Figure 3.

To see the effectiveness of Pix2Pix for solving jigsaw puzzle
problems, we perform experiments on two datasets. In the
first experiment, we randomly select 500 images of shoes
from the UT Zappos50K dataset [30, 31] and in the second
experiment, we use 1400 images of summer scenes from the
winter2summer dataset used in [33]. We resize the images
to 64 × 64 pixels. Training examples are constructed using
Algorithm 1 with P = 9 and K = 1.

We train Pix2Pix on the resulting training examples for 65

Input Target Output Input Target Output

Fig. 4: Shoe images generated from shuffled input patches.
While results seem satisfactory, the input patches are not
reconstructed exactly.

epochs on the shoes dataset and 100 epochs on the summer
scenes dataset. The goal of training is to encourage the Pix2Pix
architecture to set its weights so as to reconstruct ordered
images from scrambled patches, i.e., the jigsaw problem.

Some results are shown in Figures 4 and 5. From these
results, we can see that Pix2Pix successfully solves the jigsaw
puzzle problem when the puzzle pieces are not too complex
as in the shoe images. However, for patches with complex
content such as in the summer scenes, Pix2Pix was less suc-
cessful in reconstructing meaningful images. This is because
Pix2Pix does not simply rearrange the input patches. Instead, it
generates each pixel of the output image and therefore has no
incentive to transfer a patch unchanged from input to another
location in the output. This will be true for any image-to-image
translation method that produces the output image in a pixel-
by-pixel fashion. Therefore, learning a jigsaw puzzle solver
requires novel rethinking of the problem. The next section
lays the foundations of one such perspective.

V. A GENERATIVE MODEL FOR PLACEMENT VECTORS

Definition 1. Placement Vector: A placement vector for P
pieces must have four qualities:

1) It must contain integer-valued entries only.
2) Range of values should be from 1 till P .
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Fig. 5: Outdoor summer scenes regenerated from shuffled
input pieces. For such complex scenes, the generated images
do not contain exact copies of the input pieces.

3) There should be no missing numbers. Every integer from
1 till P must appear in the placement vector.

4) There should be no duplicates. An integer must appear
only once.

A placement vector v ∈ ZP+ , indicates the correct positions

Piece 1 Piece 2 Piece 3 Piece 4

→

v = (3, 1, 4, 2) =⇒

Fig. 6: Illustration of placement vectors. Top row: Four pieces
to be placed in 2× 2 grid. Bottom row: Placement vector v
corresponding to correct placement of pieces.

Piece 1 Piece 2 Piece 3 Piece 4 v

(1, 2, 3, 4)

(3, 1, 4, 2)

(4, 1, 2, 3)

...

(1, 3, 2, 4)

Fig. 7: Some random training examples for learning piece-
to-location relationships. For every random ordering of input
pieces, the correct placement vector v is used as the target.

of P pieces on a rectangular grid with P locations where
each element vi ∈ {1, 2, . . . , n} is the location of piece i on
a grid. If i 6= j then each element vi 6= vj . That is, elements
in the placement vector v should not be duplicates of each
other. Figure 6 illustrates how a placement vector captures the
piece-to-location mapping. A placement vector v = (3, 1, 4, 2)
for four pieces indicates that first piece should be placed at
location 3 on a grid while traversing the grid from left to right
and top to bottom, second piece should be placed at location
1, third piece should be placed at location 4 and fourth piece
should be placed at location 2 on the grid.

To model the jigsaw problem as a placement vector learning
problem, we must first address the following question: ”Can
a GAN generate samples from the distribution of placement
vectors?” Surely, if an unconditional GAN cannot generate
vectors resembling placement vectors then there is little hope
of a cGAN conditioned on input pieces to generate a vector
representing their placement. To answer this question, we
generate training data consisting of placement vectors and train
a GAN to model the distribution of these vectors.

The training data is generated as follows. For a given
number P of locations, we generate random permutations of
the set 1, 2, . . . , P . There can be P ! different permutations of



this set. For our experiment, we randomly select 200, 000 such
permutations for P = 9 as our training set. This corresponds
to the last column of Figure 7. For training a complete piece-
to-location mapping model, one would need the random image
pieces as well.

Now our goal is to check whether an adversarially trained
generator is able to learn to produce placement vectors with the
properties discussed in Section VI. The GAN model that we
use consists of two simple multilayer perceptrons (MLP) with
one hidden layer as the generator and discrimnator networks.
Input to the generator is a 50-dimensional random noise
vector sampled from a uniform distribution and its output
is a P -dimensional vector representing a placement vector.
The discriminator takes an P -dimensional vector as input and
outputs the probability of that vector being a real placement
vector. We train the GAN on our 200, 000 sample training
set for 10, 000 epochs. We then use the trained generator to
randomly sample 10, 000 vectors. Ideally, these vectors should
possess all the qualities of placement vectors. The next section
describes how to evaluate the generated set of vectors against
the properties possessed by placement vectors according to
Definition 1.

VI. EVALUATION OF PLACEMENT VECTOR GENERATION

In this section, we explain how to evaluate a system
that generates placement vectors. Any system that claims to
generate placement vectors must be evaluated for the four
qualities mentioned in Definition 1. Accordingly, we compute
the following four measures for any placement vector v:

1) Floatingness
2) Out-of-range ratio
3) Missing ratio
4) Duplicate ratio

Standard machine learning modules such as linear regres-
sion or neural networks do not necessarily produce integer-
valued outputs. But their outputs can be evaluated for their
floatingness. Let v̂ = round(v) be the closest integer-valued
placement vector to v. Then floatingness can be computed by
the formula given in Equation 7.

Floatingness(v) =
2

P

P∑
i=1

|vi − v̂i| (7)

For example, floatingness([3, 6, 2]) is 0 and floatingness([3.5,
6.5, 2.5]) is 1. Out-of-range ratio can be computed by counting
the number of entries in v̂ that are less than 1 or greater than P
and dividing this count by P . Missing ratio can be computed
by counting the integers from 1 to P that do not appear in
v̂ and then dividing by P . Duplicate ratio is the number of
duplicate entries in v̂ divided by P − 1 since the maximum
number of duplicate entries can be P − 1. Note that all four
evaluation measures produce values between 0 and 1. Lower
values indicate better placements vectors.

Figure 8 shows two generated placement vectors along with
values of their evaluation measures. The first vector has no
out-of-range values, includes all numbers from 1 to P = 9,

has no duplicates and has a floatingness value of 0.21. The
second generated vector has no out-of-range values, has two
missing numbers (2 and 4), has two duplicated entries and has
a floatingness value of 0.34.

A well-known problem with GANs is the mode collapse
problem which is the situation when a GAN maps all or
most inputs to the same output. Mode collapse implies that
generated samples will suffer from low diversity. To evaluate
the performance of our GAN which generates placement
vectors, we also compute a measure of similarity among
the generated samples. Let (v1, . . . ,vN ) denote a set of N
placement vectors generated by a GAN. We can compute a
measure of similarity amongst the generated vectors as

Similarity(v1, . . . ,vN ) =

2

N(N − 1)

N∑
i=1

N∑
j=i+1

I(L0(vi,vj), 0) (8)

where I(a, b) = 1 if a and b are equal and 0 otherwise. The L0-
norm computes the Hamming distance between two placement
vectors. If any two vectors are identical, the term inside the
summations will become 1, otherwise it will be 0. So we count
only those vectors which are exactly identical to any other
sample. Similarity measures the lack of variation in the output
of the GAN. The value of similarity will be in range 0 to 1
with 0 implying that all generated samples are distinct and
1 implying that all generated samples are exactly identical to
each other.

For 10, 000 placement vectors generated by our trained
GAN, the five evaluation measures are shown in Table I. All
five measures have values in the range 0 to 1 with lower
values indicating better placement vectors. We can see that our
trained GAN performed well with respect to all five evaluation
measures and successfully learned to generate vectors that can
be interpreted as placement vectors.

Fig. 8: Sample placement vectors generated by our trained
GAN and their evaluation by our evaluation measures. See
text for details.

VII. CONCLUSION

We have presented a generative model of placement vectors.
Such vectors can be used to represent ordering of unordered



TABLE I: Evaluation of placement vectors generated by our
trained GAN. Range of each measure is from 0 to 1 with lower
values indicating better placement vectors.

Floatingness Ratio 0.1930
Out-of-Range Ratio 0.0001
Missing Ratio 0.0533
Duplicate Ratio 0.0596
Similarity 0.0012

data such as dissected image pieces of a jigsaw puzzle problem
or reconstruction of a larger map from its constituent pieces.
Image-to-image translation models have been shown to be
insufficient for this problem since they do not reconstruct the
original pieces exactly. This motivates a new perspective of the
problem which involves learning piece-to-location mappings.
We have focused on whether a GAN has the representational
power to generate location or placement vectors. We have
shown that an unconditioned GAN can be trained to gener-
ate vectors with properties resembling those for placement
vectors. We have also presented evaluation measures for any
system claiming to generate placement vectors and have shown
that our trained GAN has favorable values for these evaluation
measures.

The natural question that remains to be answered is whether
a conditional GAN can learn the complete piece-to-location
mapping task. In other words, can a GAN learn to solve
jigsaw puzzle problems. The current work represents the first
step towards answering this question in the sense that we
have shown that an unconditioned GAN is able to generate
placement vectors representing locations.
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