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Jigsaw puzzle and its application

Automated jigsaw puzzle solving is a challenging problem1 with
numerous scientific applications.

(a) (b)

(c) (d) (e)

Figure: (a) is traditional jigsaw puzzle, (b) is edge-matching puzzle, (c)
Mitochondrial DNA, (d) Shredded document, (e)Map pieces

1Erik D Demaine and Martin L Demaine. “Jigsaw puzzles, edge matching,
and polyomino packing: Connections and complexity”. In: Graphs and
Combinatorics 23.1 (2007), pp. 195–208.
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Related work and our contribution

Different optimization techniques have been applied to
automatically solve jigsaw puzzles.

Genetic algorithms [5],
Probabilistic graphical models [2],
Quadratic programming [1] and
Linear programming [7].

Our contributions:

Learning technique to solve jigsaw puzzles.

Weaknesses of an end-to-end learning model for direct
piece-to-map image transformations.

Novel piece-to-location placement vector model.

Evaluation metric for the placement vectors.
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Generative Adversarial Networks (GANs)

Figure: Adversary
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Generative Adversarial Networks (GANs)

Figure: GAN is a minimax game between two players G and D

G’s aim is to generate real looking output so as to deceive D.

D’s aims to assign fake class to data coming from G and real
class to data received from its training sample.
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GANs framework

Figure: GAN training framework. The discriminator D tries to classify
generated samples as fake and real samples as real. Both networks D and
G are trained through feedback from D as shown by dotted arrows.
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Conditional GANs (cGANs)

Figure: cGAN conditioned on additional input e.g. glasses and hair colour.
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Our focus

Our ultimate target

Construct a conditional model that learns piece-to-location
relationship.

Our focus in the current paper

To evaluate the effectiveness of unconditional models for
learning placement vector.
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Solving the jigsaw via image-to-image translation

Jigsaw problem as an image-to-image translation task.

Input image is random ordering of image pieces and output
would be ordered image.

Figure: The jigsaw problem for square pieces – construct a
meaningful image from the individual pieces.
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Our first experiment

Image-to-image translation can be effectively achieved via the
Pix2Pix framework [4] which is a variation of a cGAN.

We perform following two experiments to solve jigsaw using
Pix2Pix.

1 Experiment on shoes dataset [6].
2 Experiment on scenes dataset [8].
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Experiment on shoes dataset

Input Target Output

Figure: Shoe images generated from shuffled input patches. While results
seem satisfactory, the input patches are not reconstructed exactly.
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Experiment on scenes dataset

Test Input Target Output

Figure: Outdoor summer scenes regenerated from shuffled input pieces.
For such complex scenes, the generated images do not contain exact
copies of the input pieces.
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Pix2Pix analysis

Piece-to-image

Pix2Pix does not rearrange original pieces to solve jigsaw.

It generates each pixel of the output image.

Piece-to-location

A novel modeling of the problem.
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Placement vectors

Placement vector gives piece-to-location mapping

Piece 1 Piece 2 Piece 3 Piece 4

→

v = (3, 1, 4, 2) =⇒

Figure: Illustration of placement vectors. Top row: Four pieces to be
placed in 2× 2 grid. Bottom row: Placement vector v corresponding to
correct placement of pieces.
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Characteristics of placement vectors

Properties

A placement vector for P pieces must have four qualities:

1 Integer-valued entries only.

2 Range from [1,P].

3 No missing numbers. Every integer from 1 to P must appear
in the placement vector.

4 No duplicate numbers. An integer must appear only once.


3
1
4
2


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Training GAN for placement vectors

Figure: GAN was trained for 10, 000 epochs
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Evaluation of placement vector

Proposed four measures to evaluate any placement vector v.

1 Floatingness: distance from closest integers.
Floatingness(3.4) = abs(3.4 - 3) = 0.4
Floatingness(3.55) = abs(3.55 - 4) = 0.45

2 Ratio of out-of-range locations

3 Ratio of missing locations

4 Ratio of duplicate locations
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Sampled placement vectors

Figure: Sample placement vectors generated by our trained GAN and
their evaluation by our evaluation measures.
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Dealing with mode collapse

A well-known problem with GANs is the mode collapse
problem.

Mode collapse is the situation when a GAN generates realistic
but very similar samples.

Therefore, we compute another measure of similarity among
the generated placement vectors.

We compute similarity ratio as ratio of identical vectors.
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Test Results

We generate 10,000 sample placement vectors with our trained
GAN and evaluate them using our five measures.

Evaluation Measures Average Results
Floatingness Ratio 0.1930

Out-of-Range Ratio 0.0001

Missing Ratio 0.0533

Duplicate Ratio 0.0596

Similarity 0.0012

Table: Evaluation of placement vectors generated by our trained GAN.
Range of each measure is from 0 to 1 with lower values indicating better
placement vectors.
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Conclusion

Image-to-image translation models are insufficient to solve
jigsaw puzzles.

GANs successfully generate placement vectors (z →
placement vector).

We also propose five evaluation measures for evaluation of our
results.
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Future direction

Solving jigsaw puzzle using cGAN
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GANs Objective Function

Objective function of GAN is:

min
G

max
D

V (D,G ) = Ex∼pdata [log( D(x)︸ ︷︷ ︸
Discriminator

output for

real data x

)]+Ez∼pz [log(1−D(G (z))︸ ︷︷ ︸
Discriminator

output for

generated

(fake) data

G(z)

)]

(1)

D wants to maximize the objective function such that D(x) is
close to 1 and D(G (z)) is close to 0.

G wants to minimize the objective function such that
D(G (z)) is close to 1.

31/38



cGAN Framework
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Figure: cGAN Framework.
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Pix2Pix Framework
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Input
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Figure: Illustration of the Pix2Pix framework.
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Evaluation Measure
Floatingness

Mostly, Machine learning models do not produce
integer-valued outputs.

But their outputs can be evaluated for their floatingness.

Let v̂ = round(v) be the closest integer-valued placement
vector to v. Then,

Floatingness(v) =
2

P

P∑
i=1

|vi − v̂i | (2)
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Evaluation Measure
Out-of-range ratio

Out-of-range ratio can be computed by counting the number of
entries in v̂ that are not in the range 1 to P and dividing this
count by P.
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Evaluation Measure
Missing ratio

Missing ratio can be computed by counting the integers from 1 to
P that do not appear in v̂ and then dividing by P.
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Evaluation Measure
Duplicate ratio

Duplicate ratio is the number of duplicate entries in v̂ divided by
P − 1.
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Evaluation Measure
Similarity

Let (v1, . . . , vN) denote a set of N placement vectors
generated by a GAN. Then,

Similarity(v1, . . . , vN) =

2

N(N − 1)

N∑
i=1

N∑
j=i+1

I(L0(vi , vj), 0) (3)

where I(a, b) = 1 if a and b are equal and 0 otherwise.

And,L0-norm computes the Hamming distance between two
vectors.
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