Adversarial Placement Vector Learning

Ayesha Rafique, Tauseef Iftikhar, Nazar Khan {mscsf16m020, tauseef.iftikhar, nazarkhan}@pucit.edu.pk http://faculty.pucit.edu.pk/nazarkhan/

Computer Vision & Machine Learning Group Punjab University College of Information Technology (PUCIT) Lahore, Pakistan

> ICACS 2019 Lahore, Pakistan 18th February 2019

What placement vectors do?

What placement vectors do?

Location 2
Location 4

What placement vectors do?

What placement vectors do?

$$\begin{bmatrix} 3\\1\\4 \end{bmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ ○ △/38

What does placement vectors do?

Piece 1 Piece 2 Piece 3 Piece 4 + Location 1 Location 2 Location 4

シュペ 5/38

What does placement vectors do?

Location 1 Location 2 Piece 1 Piece 2 Piece 3 Piece 4 +Location 3 Location 4 1 4 Placement vector 2

Placement vector gives piece-to-location mapping.

<ロト < 母 ト < 臣 > < 臣 > 臣 の Q (P 5/38)

Jigsaw puzzle and its application

Automated jigsaw puzzle solving is a challenging problem¹ with numerous scientific applications.

Figure: (a) is traditional jigsaw puzzle, (b) is edge-matching puzzle, (c) Mitochondrial DNA, (d) Shredded document, (e)Map pieces

¹Erik D Demaine and Martin L Demaine. "Jigsaw puzzles, edge matching, and polyomino packing: Connections and complexity". In: *Graphs and Combinatorics* 23.1 (2007), pp. 195–208.

Related work and our contribution

• Different **optimization techniques** have been applied to automatically solve jigsaw puzzles.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ ○ 7/38

- Genetic algorithms [5],
- Probabilistic graphical models [2],
- Quadratic programming [1] and
- Linear programming [7].

Related work and our contribution

- Different **optimization techniques** have been applied to automatically solve jigsaw puzzles.
 - Genetic algorithms [5],
 - Probabilistic graphical models [2],
 - Quadratic programming [1] and
 - Linear programming [7].

Our contributions:

- Learning technique to solve jigsaw puzzles.
- Weaknesses of an end-to-end learning model for direct piece-to-map image transformations.
- Novel piece-to-location placement vector model.
- Evaluation metric for the placement vectors.

Generative Adversarial Networks (GANs)

Figure: Adversary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 8/38

Generative Adversarial Networks (GANs)

Figure: GAN is a minimax game between two players G and D

< ロト (四) (王) (王) (王)

DQC 9/38

- E

Generative Adversarial Networks (GANs)

Figure: GAN is a minimax game between two players G and D

- G's aim is to generate real looking output so as to deceive D.
- D's aims to assign fake class to data coming from G and real class to data received from its training sample.

GANs framework

Figure: GAN training framework. The discriminator D tries to classify generated samples as fake and real samples as real. Both networks D and G are trained through feedback from D as shown by dotted arrows.

Conditional GANs (cGANs)

Figure: cGAN conditioned on additional input e.g. glasses and hair colour.

Our ultimate target

• Construct a conditional model that learns piece-to-location relationship.

Our ultimate target

• Construct a conditional model that learns piece-to-location relationship.

Our focus in the current paper

• To evaluate the effectiveness of unconditional models for learning placement vector.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 12/38

Solving the jigsaw via image-to-image translation

- Jigsaw problem as an image-to-image translation task.
- Input image is random ordering of image pieces and output would be ordered image.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 13/38

Figure: The jigsaw problem for square pieces – construct a meaningful image from the individual pieces.

Our first experiment

- Image-to-image translation can be effectively achieved via the Pix2Pix framework [4] which is a variation of a cGAN.
- We perform following two experiments to solve jigsaw using Pix2Pix.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 14/38

- Experiment on shoes dataset [6].
- Experiment on scenes dataset [8].

Experiment on shoes dataset

Figure: Shoe images generated from shuffled input patches. While results seem satisfactory, the input patches are not reconstructed exactly. 300° 15/38

Experiment on scenes dataset

Figure: Outdoor summer scenes regenerated from shuffled input pieces. For such complex scenes, the generated images do not contain exact copies of the input pieces.

Piece-to-image

• Pix2Pix does not rearrange original pieces to solve jigsaw.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 17/38

• It generates each pixel of the output image.

Piece-to-image

• Pix2Pix does not rearrange original pieces to solve jigsaw.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 17/38

• It generates each pixel of the output image.

Piece-to-location

A novel modeling of the problem.

Placement vectors

Placement vector gives piece-to-location mapping

Figure: Illustration of placement vectors. **Top row**: Four pieces to be placed in 2×2 grid. **Bottom row**: Placement vector **v** corresponding to correct placement of pieces.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 18/38

Characteristics of placement vectors

Properties

A placement vector for P pieces must have four qualities:

- Integer-valued entries only.
- **2** Range from [1, P].
- No missing numbers. Every integer from 1 to P must appear in the placement vector.
- O No duplicate numbers. An integer must appear only once.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 19/38

Training GAN for placement vectors

Figure: GAN was trained for 10,000 epochs

Proposed four measures to evaluate any placement vector \mathbf{v} .

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 21/38

- Floatingness: distance from closest integers.
 Floatingness(3.4) = abs(3.4 3) = 0.4
 Floatingness(3.55) = abs(3.55 4) = 0.45
- 2 Ratio of out-of-range locations
- 8 Ratio of missing locations
- Ratio of duplicate locations

Sampled placement vectors

Figure: Sample placement vectors generated by our trained GAN and their evaluation by our evaluation measures.

Dealing with mode collapse

- A well-known problem with GANs is the mode collapse problem.
- Mode collapse is the situation when a GAN generates realistic but very similar samples.
- Therefore, we compute another measure of similarity among the generated placement vectors.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 23/38

• We compute similarity ratio as ratio of identical vectors.

Test Results

We generate 10,000 sample placement vectors with our trained GAN and evaluate them using our five measures.

Evaluation Measures	Average Results
Floatingness Ratio	0.1930
Out-of-Range Ratio	0.0001
Missing Ratio	0.0533
Duplicate Ratio	0.0596
Similarity	0.0012

Table: Evaluation of placement vectors generated by our trained GAN. Range of each measure is from 0 to 1 with lower values indicating better placement vectors.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 24/38

Conclusion

- Image-to-image translation models are insufficient to solve jigsaw puzzles.
- GANs successfully generate placement vectors (z \rightarrow placement vector).
- We also propose five evaluation measures for evaluation of our results.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 25/38

Solving jigsaw puzzle using cGAN

References I

- Fernanda A Andalo, Gabriel Taubin, and Sione Goldenstein. "Solving image puzzles with a simple quadratic programming formulation". In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images. IEEE. 2012, pp. 63–70.
 - Taeg Sang Cho et al. "The patch transform and its applications to image editing". In: *Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on.* IEEE. 2008, pp. 1–8.
- Erik D Demaine and Martin L Demaine. "Jigsaw puzzles, edge matching, and polyomino packing: Connections and complexity". In: Graphs and Combinatorics 23.1 (2007), pp. 195–208.

References II

- Phillip Isola et al. "Image-to-image translation with conditional adversarial networks". In: arXiv preprint (2017).
- **Fubito Toyama et al. "Assembly of puzzles using a genetic algorithm".** In: *Pattern Recognition, 2002. Proceedings. 16th International Conference on.* Vol. 4. IEEE. 2002, pp. 389–392.
- A. Yu and K. Grauman. "Fine-Grained Visual Comparisons with Local Learning". In: *Computer Vision and Pattern Recognition (CVPR)*. June 2014.
- Rui Yu, Chris Russell, and Lourdes Agapito. "Solving Jigsaw Puzzles with Linear Programming". In: *arXiv preprint arXiv:1511.04472* (2015).

References III

Jun-Yan Zhu et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks". In: *arXiv* preprint arXiv:1703.10593 (2017).

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 30/38

GANs Objective Function

Objective function of GAN is: $\begin{array}{l} \underset{G}{\min} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}} [\log(\underbrace{D(x)}_{\text{Discriminator}})] + \mathbb{E}_{z \sim p_{z}} [\log(1 - \underbrace{D(G(z))}_{\text{Discriminator}})] \\ \begin{array}{l} \underset{G}{\text{Discriminator}} \\ \underset{real \ data \ x}{\text{Output}} \quad for \\ \underset{fake) \ data \\ \\ G(z) \\ (1) \end{array}$

• D wants to maximize the objective function such that D(x) is close to 1 and D(G(z)) is close to 0.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 31/38

• *G* wants to minimize the objective function such that D(G(z)) is close to 1.

cGAN Framework

Figure: cGAN Framework.

Pix2Pix Framework

Figure: Illustration of the Pix2Pix framework.

◆□→ ◆□→ ◆□→ ◆□→ □ □

DQC 33/38

Evaluation Measure

- Mostly, Machine learning models do not produce integer-valued outputs.
- But their outputs can be evaluated for their floatingness.
- Let $\hat{\bm{v}} = \text{round}(\bm{v})$ be the closest integer-valued placement vector to $\bm{v}.$ Then,

$$\mathsf{Floatingness}(\mathbf{v}) = \frac{2}{P} \sum_{i=1}^{P} |v_i - \hat{v}_i| \tag{2}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 34/38

Out-of-range ratio can be computed by counting the number of entries in $\hat{\mathbf{v}}$ that are not in the range 1 to *P* and dividing this count by *P*.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● ○ ♀ 35/38

Missing ratio can be computed by counting the integers from 1 to P that do not appear in $\hat{\mathbf{v}}$ and then dividing by P.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 36/38

Duplicate ratio is the number of duplicate entries in $\hat{\mathbf{v}}$ divided by P-1.

<□> <□> <□> <□> <三> <三> <三> <三> <三> <三> ○<○ 37/38

Evaluation Measure Similarity

 Let (v₁,..., v_N) denote a set of N placement vectors generated by a GAN. Then,

Similarity
$$(\mathbf{v}_1, \dots, \mathbf{v}_N) =$$

$$\frac{2}{N(N-1)} \sum_{i=1}^N \sum_{j=i+1}^N \mathbb{I}(L0(\mathbf{v}_i, \mathbf{v}_j), 0) \quad (3)$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 38/38

- where $\mathbb{I}(a, b) = 1$ if a and b are equal and 0 otherwise.
- And, L0-norm computes the Hamming distance between two vectors.