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Abstract

In this contribution we present a formulation of the 2D-
3D pose estimation problem using implicit algebraic sur-
faces. To model the projective mapping, we apply novel
Dixon resultant heuristics to deal with the rapidly increas-
ing polynomial degrees of projected image outlines. The ad-
vantages as well as disadvantages of using linearised twist
coordinates for pose representation are also discussed. We
also show that for pose estimation purposes, using simple
algebraic distance is more practical than using a first-order
approximation of the exact Euclidean distance between a
point and an implicitly defined entity. While not as effec-
tive as current explicit approaches, our implicit formulation
offers potential improvements in silhouette-based pose esti-
mation.

Keywords: Pose Estimation, Algebraic Surfaces, 3L
Fitting, Occluding Contours, Elimination Theory, Dixon
Resultant

1. Introduction

2D-3D pose estimation means estimating the relativepo-
sition andorientationof a known3D model from a 2D im-
age of the model (Figure1(a)). Silhouette based pose esti-
mation deals with finding the 3D pose that best matches the
image silhouette. The problem of obtaining 3D estimates of
orientation and translation with respect to a camera has nu-
merous applications ranging from robotics [18] to marker-
less motion capture [3] to medical intervention [4]. Theex-
plicit approach to this problem involves registering points,
lines, planes and other higher-order explicitly defined enti-
ties to obtain optimal pose estimates. Figure1(b)shows one
such explicit approach whereby 3D lines are back-projected
through silhouette pixels in the image and then registered
with the 3D model points [18]. In this work we explore the
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Figure 1. 2D-3D Pose Estimation

implicit approachtowards the 2D-3D pose estimation prob-
lem whereby 3D objects and 2D silhouettes are modelled as
implicit polynomials. In the following we will use the term
occluding contour1 for silhouette andcontour generatorfor
the 3D points whose projection forms the silhouette. This
is visualised in Figure5.

Our implicit solution to the 2D-3D pose estimation prob-
lem consists of three phases:

1. Explicit 3D mesh to implicit algebraic surface conver-
sion.

2. Implicit contour generator to implicit occluding con-
tour computation using elimination theory.

3. Error minimisation between explicit 2D silhouette pix-
els and implicit occluding contour to obtain the opti-
mal 3D pose estimate.

The first two phases are off-line whose result is used in the
third on-line phase. In the first phase, we use the 3L fit-
ting algorithm [2] to convert a point set represented as a
3D mesh into its algebraic surface representation as shown
in Figure2. In the second phase, we use elimination the-
ory to compute occluding contour equations from equations

1Occluding contour is the more widely used term in pose estimation
literature
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Figure 2. Conversion of 3D mesh into an implicit polynomial
equation and the corresponding implicit algebraic surface.

of contour generators. Such computations are very expen-
sive and the size of the final occluding contour equations
increases very rapidly as the number of pose parameters is
increased (as much as 11 MB for a 4th degree algebraic sur-
face parametrised by 3D translation parameters). We there-
fore represent pose using linearised twist coordinates [3] to
reduce the size of the occluding contour equations. Finally,
in the third phase, we estimate the optimal linearised twist
parameters by minimising the distance between image out-
line pixels and the occluding contour.

Representing objects algebraically (i.e., as implicit poly-
nomials) has numerous advantages that have been exploited
for 2D as well as 3D registration [20] and recognition [11,
21, 23]. Some researchers have also explored 3D recon-
struction from 2D algebraic outlines [7] and vice versa [9].
However, a fundamental problem in studying the projec-
tive geometry of algebraic surfaces is that the 2D occluding
contour of an algebraic surface of degreed is a 2D poly-
nomial of degreed(d − 1) [6]. Table1 illustrates how the

Table 1. Increase in degrees, computation times and number of
terms of 2D occluding contours in image coordinates(s, t) for in-
creasing degrees of the 3D algebraic surface in world coordinates
(x, y, z).

Surface Degree 2 4 6 8
Occ. Contour Degree 2 12 30 56

Time (sec) .05 .2 21 1099
Terms 6 91 496 1653

degree, computation time and number of terms of the oc-
cluding contour in 2D image coordinates increase rapidly
with the degree of the algebraic surface in 3D coordinates.
The study of the projective geometry of algebraic surfaces
has been limited because of this unwieldy increase in de-
grees, computation times and sizes of projected occluding
contours. We therefore limit ourselves to studying only 4th
order algebraic surfaces. They can represent many useful
2D shapes and 3D real world objects [2] as can be seen in

Figure2.
We present state of the art heuristics in computing the

Dixon resultant for efficiently obtaining occluding contour
polynomials and show how occluding contour polynomials
can be used for the 2D-3D pose estimation problem. The
main idea is to parametrise the algebraic surface by the pose
parameters and then obtain the corresponding parametrised
occluding contour polynomial. The optimal pose for given
explicit outline pixels is then obtained by minimising a dis-
tance measure between the occluding contour polynomial
and the pixels. We motivate the use of the implicit pose
estimation formulation in section2. Section3 describes
the representation of 3D pose using linearised twist coordi-
nates. It is followed by an explanation of elimination theory
and novel Dixon resultant heuristics for obtaining occluding
contour equations in section4. Implicit occluding contour
based pose estimation is described in section5 which also
presents some experimental results and is followed by some
conclusions in section6.

2. Motivation

Rosenhahn [18] showed that explicit approaches to the
pose problem are faster than free-form approaches. How-
ever, in many cases, extracting point-based features from
images is not possible. This implies the need for global
descriptors. Furthermore, estimates derived from global de-
scriptors are more accurate and robust. This work therefore
explores the free-form approach whereby objects are mod-
elled as algebraic surfaces.

A free-form approach was also used earlier by Krieg-
man and Ponce [9] who used elimination theory to com-
pute occluding contour equations of parametric surfaces.
They reported that the free-form approach quickly leads
to “unwieldy” occluding contour equations. In that pa-
per, they used simple elimination techniques and men-
tioned that advanced techniques will reduce the complexity
of the problem. Occluding contour computation through
elimination has since remained a bottleneck that has re-
stricted further progress in this approach. However, due
to progress in computational power, advanced elimination
strategies [8][14][13] and the development of specialised
computer algebra systems such asFermat [12], implicit
occluding contour equations have become easier (but not
easy) to compute and handle. We therefore re-enter the im-
plicit pose estimation problem. Coefficients of polynomi-
als representing algebraic entities encode useful informa-
tion about the represented entity [23]. This information in-
cludes

1. algebraic invariants that help in classifying and recog-
nising different objects [10] [11] [19], and

2. intrinsic surface geometry that helps in registra-
tion [20].



Figure 3.Left to right: Zero-sets of implicit polynomials (green)
fitted to 2D data rotated by0, 10, 20, 30 and45 degrees and the
corresponding intrinsic reference frames (red and blue) extracted
from the polynomial coefficients.

The motivation for this work comes from the second prop-
erty, i.e., using polynomial coefficients for registration. An
intrinsic reference frame of an implicit polynomial consists
of the center of the polynomial combined with its orienta-
tion vectors. Figure3 shows the intrinsic reference frames
extracted from coefficients of a 2D quartic fitted to rotated
data. As can be seen the extracted intrinsic reference frames
are covariant with respect to the transformations. Figure
4(a)shows the intrinsic reference frame extracted from co-
efficients of a 4th-order algebraic surface representing a pa-
per puncher and for the same puncher rotated by45◦ around
the x-axis. Given such intrinsic information, the problem
of registering two objects reduces to alignment of their in-
trinsic reference frames [20]. This obviates the need for
iteratively finding correspondences needed by explicit reg-
istration approaches such as ICP [1].

(a) Intrinsic reference frames
for 3D-3D implicit registration.

(b) Tangent cone of a torus with re-
spect to the origin.

Figure 4. Advantages of algebraic surfaces: (a) Implicit 3D-3D
registration and (b) Tangent cone computation.

Moreover, given an algebraic surface, elimination theory
can be used to compute the surface’s tangent cone [17] as
viewed from a certain point. Figure4(b)shows the tangent
cone of a torus when viewed from the origin. Elimination
theory can also be used to compute the occluding contour
of an algebraic surface’s projection [9]. This is explained in
section4.

3. Pose Representation

By pose estimation we mean estimation of a rigid body
motion that brings a 3D model into agreement with image
data. Rigid body motion consists of a rotationR ∈ R

3×3

and a translationt ∈ R
3 and can be written using homoge-

neous coordinates as

M =

[
R t

01×3 1

]

. (1)

The group of rigid body motions is denoted bySE(3). Ev-
ery rigid motion can also be expressed as a rotation around
a 3D axis and a translation along that axis. This leads to the
twist representation of rigid body motion. A twist can be
written as

ξ̂ =

[
ω̂ v
0 0

]

∈ R
4×4, (2)

where

ω̂ =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 ∈ R
3×3 (3)

is the skew-symmetric matrix corresponding to the rotation
axisω = (ω1, ω2, ω3)

T ∈ R
3 andv = (v1, v2, v3)

T ∈ R
3.

v determines the location of the rotation axis and the amount
of translation along that axis. The norm‖ω‖ represents
the amount of rotation. The group of twists is denoted by
se(3). A one-to-one map called theexponential mapexists
betweense(3) andSE(3) whereby

M = eξ̂ = I + ξ̂ +
ξ̂2

2!
+

ξ̂3

3!
+ · · · (4)

We will use the approximation

eξ̂ ≈ I + ξ̂ =







1 −ω3 ω2 v1

ω3 1 −ω1 v2

−ω2 ω1 1 v3

0 0 0 1







︸ ︷︷ ︸

ξ̂′

(5)

to obtain linearised twistswhich we denote bŷξ′ similar
to [3]. This leads to equations of rigid body motion that
are linear in the six motion generators(v, ω). Once the
optimal twist is computed using these linear equations, the
corresponding pose matrixM can be efficiently computed
using

M = eξ̂ =

[
eω̂ (I − eω̂)ω̂v + ωωT v

0 1

]

, (6)

whereeω̂ is computed using the Rodrigues’ formula

eω̂ = I + ω̂ sin(‖ω‖) + ω̂2(1 − cos(‖ω‖)). (7)

For a detailed and accessible introduction to rigid body mo-
tions, twists and Rodrigues’ formula, we refer the reader to
[15] and [16].

The parametrisation of an implicit algebraic surface
P (x) = 0 by the pose parameters is given byP (ξ̂′x) = 0
which we denote byP (x,v, ω) = 0. Using linearised
twists significantly reduces the degree and computation
time of parametrised occluding contoursOC(s, t,v, ω) =
0 as will be explained in the next section.



4. Occluding Contour Computation

contour generator
P (x) = 0

∇P (x)

s
t

z

Q(x) = (x − f) · ∇P (x) = 0

x

y

f

P (x) = P (x, y, z) = 0

occluding contour
OC(s, t) = 0

Figure 5. A contour generator (blue) w.r.t to focal pointf and the
corresponding occluding contour (red).

The occluding contour is the projection of the contour
generator as shown in Figure5. The contour generator is
the locus of all points on the surface that lie on the boundary
between the visible and occluded surface points. All points
x on the contour generator therefore satisfy the following
polynomial system:

P (x) = 0 (8)

Q(x) = (x − f) · ∇P (x) = 0 (9)

Q(x) = 0 is called thetangency condition. It simply states
that at the contour generator points, the surface gradient is
perpendicular to the tangent ray emanating from the focal
point f . Since the occluding contour is the projection of
the contour generator it satisfies the following polynomial
system:

P (x) = 0 (10)

Q(x) = 0 (11)

H(x, s) = 0 (12)

V (x, t) = 0 (13)

whereH(x, s) andV (x, t) are the horizontal and vertical
projection equations. To obtain the equation of the occlud-
ing contour purely in terms of the image coordinate system
(s, t), we need toeliminate the variablesx, y, z from the
system.

4.1. Elimination Theory

Elimination theory is a classical branch of mathemat-
ics [24]. Elimination of variables from a polynomial sys-
tem is the algebraic counterpart of the geometric concept of
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Figure 6. Elimination implies projection. The black dots atthe
intersection of the line and the circle satisfy the polynomial system
x

2 +y
2−1 = 0, x−y = 0. Eliminatingy from the system yields

the projection onto thex-axis (gray dots).

projection. By eliminating variables, an algebraic variety is
projected onto a lower dimensional subspace as illustrated

by Figure6. The black dots(
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√

1
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√
1
2 ,−

√
1
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lie at the intersection of the circlex2 + y2 = 1 and the line
y = x and therefore satisfy the polynomial system

x2 + y2 − 1 = 0 (14)

y − x = 0 (15)

We can eliminate the variabley from this system by substi-
tuting y = x in the first equation. This yields the equation

2x2 − 1 = 0 which represents the gray dots
√

1
2 and−

√
1
2 ,

i.e., the projections of the 2D black dots onto the 1D hor-
izontal axis. Such simple elimination by substitution can
work for linear equations but for higher-order polynomial
systems consisting of many equations, sophisticated heuris-
tics are required. Resultants constitute one such heuristic
approach as described next.

4.1.1 Resultants

The resultant of a polynomial system is a single polynomial
in the coefficients of the original polynomials. The origi-
nal variables do not appear in the resultant, hence they are
eliminated. For a polynomial systemS, non-trivial solu-
tions exist if the resultantRes(S) = 0. The elimination
heuristic we apply for eliminating the three variablesx, y, z

from our system of four polynomial equations is called the
Dixon resultant[8] which can eliminaten variables from
a system ofn + 1 polynomial equations. The basic idea
is to construct a special matrix from the coefficients of the
polynomials such that the determinant of this matrix is the
resultant or a multiple of the resultant (called the projection
operator).

Let X = {x1, . . . , xn} be a set ofn variables andP =
{p1, . . . , pn+1} a set ofn+1 polynomials in the polynomial
ring k[x1, . . . , xn]. Form the setX = {x1, . . . , xn} of n



new variables and construct the(n+1)×(n+1) cancellation
matrixCP of P :

CP =










p1(x1, x2, . . . , xn) . . . pn(x1, x2, . . . , xn)
p1(x1, x2, . . . , xn) . . . pn(x1, x2, . . . , xn)
p1(x1, x2, . . . , xn) . . . pn(x1, x2, . . . , xn)

... . . .
...

p1(x1, x2, . . . , xn) . . . pn(x1, x2, . . . , xn)










·

(16)
If we set x1 = x1, the first two rows ofCP will be-
come identical, thus causing the determinant|CP | to be-
come zero. In general, settingxi = xi for any1 ≤ i ≤ n

will cause|CP | to become zero. Therefore,
∏n

i=1(xi − xi)
divides |CP | and can be cancelled out. This gives us the
Dixon polynomial

δP =
|CP |

∏n

i=1(xi − xi)
· (17)

We can treatδP as a polynomial inX and extract the setF
of its coefficients which are polynomials inX . The Dixon
matrix DP is the coefficient matrix ofF . Being a coeffi-
cient matrix,DP will not contain any of the variables inX .
Hence the variables inX will be eliminated in the expres-
sion for the Dixon projection operator|DP | provided that
DP is a square non-singular matrix. If not, then a maxi-
mal rank submatrix [8] of DP can be used instead. For our
computations, we used Arthur Chtcherba’sMAPLE imple-
mentation [5] of [8] to computeDP .

However, two major obstacles still remain in obtaining
the true resultant. Firstly, resultant matrices tend to become
very large even for moderate degree polynomial systems.
Determinant computation of such large polynomial matri-
ces is extremely challenging, even for commercial computer
algebra systems (CAS) likeMAPLE. The specialised CAS
Fermat [12] however, has better performance. Secondly,
even after successful determinant computation, very often
the resultant is a factor of the determinant and needs to be
factored out. Again, most CASs fail at factorising very large
determinant polynomials. Therefore, further heuristics are
required for(i) keeping the size of the determinant matrix
small,(ii) efficient determinant computation, and(iii) ex-
tracting the resultant from the determinant. To keep matrix
size small, we use successive elimination [8]:

1. Eliminatex andy from P, Q, H to get a polynomial
A(s, t, z).

2. Eliminatex andy from P, Q, V to get a polynomial
B(s, t, z).

3. Eliminatez from A, B to get the occluding contour
OC(s, t).

For each elimination step, the following two steps can be
performed to alleviate problems(ii) and(iii):

1. Before determinant computation, identify and factor
out spurious factors from the Dixon matrix using the
following rule from linear algebra:

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1row1

a2row2

...
anrown

∣
∣
∣
∣
∣
∣
∣
∣
∣

= a1a2 . . . an

∣
∣
∣
∣
∣
∣
∣
∣
∣

row1

row2

...
rown

∣
∣
∣
∣
∣
∣
∣
∣
∣

· (18)

This tells us that any row factorsa1, a2 . . . , an are spu-
rious factors because the true resultant is irreducible.
They can be removed from the Dixon matrix before
computing the determinant. If they are not removed,
they will end up as spurious factors in a comparatively
bigger determinant expression. In our experiments,
late removal of such factors from very large deter-
minant expressions was often not possible inMAPLE.
Early removal of spurious factors leads us closer to the
exact resultant and significantly reduces the time for
determinant computation. Our approach is a simpli-
fied version of the more powerful strategies developed
by Lewis [13].

2. UseFermat’s multivariate Lagrange interpolation
for determinant computation. It is considerably faster
thanMAPLE’s fraction-free Gaussian elimination.

In summary, given an algebraic surface parametrised by
the linearised twist coordinates(v, ω) of the pose (as ex-
plained in Section3) and the projection matrix of a camera
with projection centerf , the occluding contour satisfies the
polynomial system

P (x,v, ω) = 0 (19)

(x − f) · ∇P (x,v, ω) = 0 (20)

H(x, s) = 0 (21)

V (x, t) = 0 (22)

The degree of the system inv, ω is equal to the surface
degree. By eliminatingx, y, z from the system using the
Dixon resultant, we obtain the algebraic occluding contour
OC(s, t,v, ω) parametrised by the linearised twist coordi-
natesv and ω of the 3D pose. However, in our experi-
ments we noticed thatOC(s, t,v, ω) obtained in this way
had higher than required degrees inv and ω. Although
this polynomial represented the correct zero-set, it had con-
siderably larger than required size and computation time.
This lead to difficulties in the numerical optimisation pro-
cedure. If instead of the contour generator equations19and
20, we parametrise the projection equations21 and22with
the twist coordinates we obtain the exact occluding contour.
Such swapping of parametrisation is consistent with the ob-
servation that transforming an algebraic surface by an ar-
bitrary transformationT is equivalent to transforming the



coordinate system byT−1. Furthermore, it leads to a poly-
nomial system that is linear in the twist coordinates instead
of the degree of the surface. So the polynomial system we
use is

P (x) = 0 (23)

(x − f) · ∇P (x) = 0 (24)

H(x, s,v, ω) = 0 (25)

V (x, t,v, ω) = 0 (26)

Table2 shows resultant computation times for the4th

degree algebraic surface representing a paper puncher (Fig-
ure 2) using increasing numbers of pose parameters and
viewed through a real-world projection matrix. It can be
seen that computation time increases rapidly as more pose
parameters are used and that multivariate Lagrange interpo-
lation is faster then fraction-free Gaussian elimination for
determinant computation. Machine used was a 2.00 GHz
Intel Core2Duo with 2GB RAM.

Table 2. Column-wise: Resultant computation times for increasing
numbers of pose parameters. Row-wise: Maple’s Fraction-Free
Gaussian Elimination (FFGE) vs. Fermat’s Multivariate Lagrange
Interpolation (MLI). († = No answer.)

v1 v1, v2 v1, v2, v3

Terms 1183 8281 40415
Maple’s FFGE 4m41s 4h29m > 15h†

Fermat’s MLI 1m14s 19m30s 3h50m

5. Pose Estimation

Given a binary image containing the outline of the 3D
object in an arbitrary pose, we need to minimise thedis-
tancebetween the set of outline pixelsD = {p1, . . . ,pq}
andOC(s, t,v, ω) to obtain the optimal twist coordinates
v, ω from which the rigid body motion can be computed.
No closed-form expression for the exact Euclidean dis-
tance between a point and an implicitly defined curve exists.
Therefore first-order approximations like|OC(s,t,v,ω)|

‖∇OC(s,t,v,ω)‖

have to be used [22]. However, minimisation using such
approximations leads to residual functions that have many
local minima (Figure7(a)). We avoid them by using sim-
ple algebraic distance|OC(s, t,v, ω)| which is a smaller
expression and also more smooth (Figure7(b)). The corre-
spondingalgebraic mean square distancethat we need to
minimise becomes

∆2
D(v, ω) =

1

q

q
∑

i=1

OC(pi,v, ω)2· (27)

Since∆2
D(v, ω) is non-linear invi andωi, the correspond-

ing non-linear least squares problem involves minimising
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(a) Using first-order approxima-
tion of exact distance.
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(b) Using algebraic distance.

Figure 7. The residual using (a) approximate distance and (b) alge-
braic distance as a function of a puncher’s pose parameterv1. The
global minimum at0 is surrounded by numerous local minima on
each side for the case of approximate distance while algebraic dis-
tance leads to a smoother residual function.

the length of the residual vectorR = (R1, . . . , Rq):

‖ R(v, ω) ‖2=

q
∑

i=1

Ri(v, ω)2, (28)

where
Ri(v, ω) = |OC(pi,v, ω)| (29)

is the algebraic distance from pixelpi to the zero-set
Z(OC(v, ω)). We use the Levenberg-Marquardt algorithm
to solve the non-linear minimisation problem.

Some more insight into the choice of approximate vs.
algebraic distance can be gained by writing out the residual
functions for the approximate and algebraic distances. For
clarity, we present the case of just a single pose parameter
v1 and denoteOC(s, t, v1) by f . For the case of approxi-
mate distance, the residual function and its partial derivative
w.r.t. v1 become

R =

√

f2

f2
s + f2

t

, (30)

Rv1
=

1
√

f2

f2
s
+f2

t

(

ffv1

fs
2 + ft

2 −
f2
(
fsfsv1

+ ftftv1

)

(f2
s + f2

t )
2

)

·

(31)

This requires evaluating the six polynomials
f, fv1

, fs, ft, fsv1
, ftv1

. In contrast, when algebraic
distance is used the same functions become

R = |f |, (32)

Rv1
= sign(f)fv1

(33)

which requires evaluating only two polynomialsf andfv1
.

For a multi-camera setup with occluding contours
f1, f2, . . . , fn, the combined residual function using alge-
braic distance can be defined as

R =

n∑

j=1

√

f2
j (34)



with partial derivative w.r.t.vi (and similarly w.r.t.ωi)

Rvi
=

n∑

j=1

sign(fj)fjvi

· (35)

Due to approximation (5), the optimal linearised twist
ξ̂′(v, ω) yields a linear approximation of the correct pose.
The correct pose can be obtained by iterating between the
following steps:

1. Compute the optimal linearised twistξ̂′ that minimises
(27) for occluding contourfk.

2. Transform the 3D model byM = eξ̂′

using (6).

3. Compute an updated occluding contourfk+1 corre-
sponding to the transformed 3D model.

Due to high computational cost, we perform step 3 off-line.
To get closer to real-time implicit pose estimation, a quick
on-line implementation of the Dixon resultant is required.
So, while linearised twists lead to more efficient Dixon re-
sultant computations, they require on-line elimination tech-
niques in order to move towards real-time implicit pose es-
timation.

As an example, we attempt to compute the parameters
v1, v2 andv3 for the 3D model of a paper puncher as viewed
in Figure 8 through a known camera projection matrix. The
green outline is the initial pose while the blue outlines show
the convergence behaviour of our algorithm. Convergence
was achieved in only three iterations and average time per
iteration was three seconds. Figure9 shows convergence in

Figure 8. Convergence behaviour using algebraic distance when
estimating three pose parametersv1, v2, v3. (Green = initial pose,
blue = estimated poses.)

presence of noise, occlusion and missing data in the image
outline pixels. Figure 10 shows the variation in algebraic
error of the estimated pose when noise is added to the image
silhouettes in a stereo setup.

Figure 9. Convergence behaviour using algebraic distance in pres-
ence of noise, occlusion and missing data. (Green = initial pose,
blue = estimated poses.)

Figure 10. Algebraic error variation with increasing silhouette
noise for a stereo setup viewing a 4th degree algebraic surface
placed at the origin.

6. Conclusion

We have presented a formalisation of implicit 2D-3D
pose estimation. We use linearised twist coordinates to
represent pose. While this choice leads to iterative linear
search for the optimal pose parameters in explicit pose es-
timation formulations, using it in our implicit formulation
calls for further research in fast, on-line resultant computa-
tions. However, linearised twists do lead to efficient Dixon



resultant computations.
In our experiments, parametrising coordinate transfor-

mations instead of surface transformations by the pose pa-
rameters leads to exact outline equations. We have also
shown that for numerical minimisation, using simple alge-
braic distance is more practical than using a first-order ap-
proximation of the exact Euclidean distance. In the results
shown, we have only estimated the vectorv. Estimation of
ω can be carried out using ideas from [17] who relate those
properties of the image outline and surface that depend only
on rotation (for instance, contour curvature of outline and
Gaussian curvature of surface).
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