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Chapter 1
Introduction

2D-3D pose estimation is a crucial task for many problems in areas ranging from robot

navigation to medical intervention. It involves estimating the relative position and orien-

tation of a known 3D object with respect to a reference camera system. In other words,

we search for a transformation (i.e. the pose) of the 3D object such that the transformed

object corresponds to 2D image data. For rigid objects, such a transformation can be the

Euclidean transformation consisting of a rotation R and a translation t. Pose estimation

R,t

(a) 2D-2D Registration (b) 3D-3D Registration

R,t

O

(c) 2D-3D Registration

R,t

O

(d) 2D-3D Silhouette-based Registra-

tion

Figure 1.1: The spatial (a), (b) and projective (c), (d) registration domains.

is a subclass of the more general problem of registration which is one of the key problems
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in computer vision. Registration is the process of aligning 2D and/or 3D objects. Ob-

jects can include images, shapes, curves, surfaces or point sets. Figure 1.1 shows different

registration scenarios. Based on the different types of objects being aligned, the main

registration domains can be categorised as

1. 2D-2D registration whereby a source image object is transformed so that it aligns

with a target object,

2. 3D-3D registration whereby a source 3D curve, surface or point set is transformed

so that it aligns with a target 3D curve, surface or point set,

3. 2D-3D registration whereby a source 3D curve, surface or point set is transformed

so that it aligns with a target 2D image or image curve.

Categories 1 and 2 are instances of spatial registration since they involve alignment of spa-

tial data (in 2D image space for category 1 and in 3D space for category 2). The required

transformation can then be affine or Euclidean. Category 3 is an instance of projective

registration since it involves aligning 3D spatial data to 2D projective data [21]. The re-

quired transformation in this case is therefore affine or Euclidean followed by a projective

transformation. Figure 1.2 shows a hierarchy of the different registration domains.

Registration

Spatial

2D-2D 3D-3D

Projective

2D-3D

Figure 1.2: Hierarchy of registration domains

Pose estimation, as defined in this thesis1, falls under the category of projective regis-

tration. Specifically, it is a subclass of 2D-3D registration where the projective transfor-

mation is already known and the required transformation is therefore affine or Euclidean.

Since we will be dealing with rigid objects only, we can ignore affine transformations of

the 3D objects and we can restrict Euclidean motions to rigid body motions. The pose

estimation problem can then be defined as

Definition 1.1 (Pose Estimation). Estimation of the 3× 3 rotation matrix R and the

3 × 1 translation vector t that constitute the rigid body motion needed to transform a 3D

object into agreement with 2D image data.

From here onwards, by pose estimation we will mean 2D-3D pose estimation.

1The terms pose estimation, registration, motion estimation and tracking are used ambiguously in the litera-

ture. We therefore wish to differentiate pose estimation and registration at the outset.
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Current approaches to pose estimation (and registration in general) can be divided

into two categories:

1. Explicit pose estimation whereby the 2D and 3D entities involved are defined ex-

plicitly. This includes points, lines and higher order entities such as conics, kinematic

chains or higher order 3D curves [58].

2. Free-form pose estimation whereby the entities involved are modelled as free-form

objects such as parametric curves/surfaces, 3D meshes, active contours and implicit

curves/surfaces [58].

Figure 1.3 presents a hierarchy of the different registration techniques.

Registration Techniques

Explicit

Point-based Higher order entities

Free-form

Parametric Active Contour Implicit

Figure 1.3: Different registration techniques

This thesis explores 2D-3D pose estimation using free-form objects. The particular

free-form representations we use are implicit surfaces. From the image domain we use

only the image silhouettes which are modelled as implicit curves while 3D objects are

modelled as implicit surfaces. The particular class of implicit surfaces we use are called

algebraic surfaces. The combined approach can therefore be termed as silhouette-based

2D-3D pose estimation using algebraic surfaces.

Image silhouettes1 are a rich source of geometric information about the 3D objects

being viewed. An image silhouette is the projection of the locus of points on the object

– the contour generator 2 – which separates the visible object points from the occluded

ones [55]. Alternatively, contour generators are 3D curves consisting of points where the

surface turns away from the viewer [27]. Mathematically, this implies that the normal

to the 3D surface at points on the contour generator is perpendicular to the viewing

direction.

1.1 Literature Overview of Silhouette-based 3D Analysis

In this section we present an overview of of both explicit and implicit silhouette-based

reconstruction, recognition and tracking techniques.

1also called occluding contours, extremal contours, apparent contours
2also called extremal boundary
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Reconstructing shape from silhouettes was introduced by Baumgart [11] more than

three decades ago. Cippolla and Blake [55] showed that by analysing silhouette deforma-

tions local surface curvature can be computed along the corresponding contour generators.

Forsyth [22] showed that outlines of algebraic surfaces completely determine their pro-

jective geometry from a single view. Cross et al. [29] studied the projective relationship

between the coefficients of quadratic algebraic surfaces and the coefficients of the corre-

sponding 2D algebraic silhouettes. Due to perspective projection, the relationship between

algebraic surface and algebraic plane curve coefficients is very complex for higher-order

surfaces. Kang et al. [35] reconstructed 3D surfaces from occluding contours of algebraic

surfaces using a linear dual-surface approach that makes use of the duality between 3D

points and tangent planes.

Taubin and Cooper [66] showed that by representing silhouettes by implicit polynomi-

als, algebraic invariants and geometric information of the objects can be extracted from

the polynomial coefficients. Algebraic invariants lead to fast object recognition while ge-

ometric information leads to simpler registration. Continuing with Taubin and Coopers’

ideas, Lei et al. [43][44] and Siddiqi et al. [34] used 2D object silhouettes to recognise dif-

ferent objects using fast Bayesian recognition based on the algebraic invariants. Tarel et

al. [64] and Unel and Wolovich [50] applied the same ideas for aligning 2D shapes.

For 2D-3D pose estimation, Kriegman and Ponce [42] parameterised image silhouette

equations by 3D pose parameters and minimised the distance between such equations

and pixels representing image outlines to obtain the optimal pose. Rosenhahn [58] used

the explicit approach instead and back-projected lines through the silhouette pixels in

order to register 3D models with those lines. He extended his approach to human motion

tracking in [5]. Ilic et al. [59] and Knossow et al. [41] also used image silhouettes for

human motion tracking using implicit equations.

1.2 Literature Overview of Registration Algorithms

We will divide registration literature into spatial and projective registration approaches.

Ideas from each approach are, however, used in the other.

1.2.1 Spatial Registration

Considerable work has been done on spatial registration problems. One of the most

popular approaches for spatial registration is the Iterative Closest Point (ICP) method

simultaneously introduced by several groups [6][16][72][15][48]. In its original form, ICP

iteratively finds the closest point pairs between the data sets and tries to find the trans-

formation that minimises the distances between the closest point pairs. The obtained

transformation is then applied to the source data set and new closest point pairs are

found which are in turn used to find a new distance minimising transformation. This

process continues until the registration error between source and target falls below some

quality threshold or the solution converges.

The transformation space of rotations and translations might contain many transfor-

mations that minimise the point pair distances locally. Such transformations are called
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local minima. In contrast, the global minimum is the transformation that minimises the

distances globally. The problem with ICP is that it can get stuck in local minima. In

order to converge to the global minimum, an initial transformation is required that is close

to the true value. ICP also suffers from the problem of slow convergence [63]. Moreover,

one data set has to be a proper subset of the other and the method is sensitive to errors

in feature extraction and occlusion. There are numerous ICP variants that address these

problems.

Zhang [72] improves upon the original ICP by using k-D trees to speed up closest point

search and by using a dynamic distance threshold derived through distance histogram

statistics. Points further apart than this adaptive threshold are not used for motion

computation.

Johnson and Kang [33] improve upon Zhang’s work by integrating texture information

with the distance measure. Points that have small Euclidean distance but different colours

are still treated as having a large distance.

Using Euclidean distance in ICP restricts tangential sliding along aligned lines which

causes slow convergence and multiple weak minima near the global minimum. To remedy

that problem, Nguyen et al. [51] replace the Euclidean distance by the “normal distance”

between patches. It leads to faster convergence. Better registration accuracy, noise tol-

erance and surface coverage are achieved by using low curvature patches instead of high

curvature landmarks such as corners and ridges. Rough pre-alignment is still needed for

their approach but their main contribution is speed and accuracy.

Rusinkiewicz and Levoy [63] breakup the ICP algorithm into 6 main stages and ex-

amine the effect of choices at each stage on convergence speed. They conclude that

projection based correspondence finding and a point-to-plane error metric are most useful

for increasing convergence speed. They construct a high-speed ICP by combining dif-

ferent variants and propose the use of variant switching algorithms that switch between

appropriate variants depending on local error landscape or the probable presence of local

minima.

Stewart [61] proposes using the error covariance matrices of the data to get more

accurate estimates of registration since estimates depend on error in data. He formulates

registration as a statistical optimisation problem whereby point matching is based on the

Mahalanobis distance instead of Euclidean distance and registration therefore involves

minimising the combined Mahalanobis distances of all data points.

Boughorbel et al. [10] replace the Euclidean distance of ICP by a Gaussian measure of

distance and similarity. Minimising an energy function of the Gaussian measures implies

maximisation of both overlap and similarity. The energy function is always differentiable

and convex in a large neighborhood of the global solution. This allows a large region

of convergence and therefore reduces chances of getting stuck in local minima. ICP, on

the other hand, has a non-differentiable cost function that imposes local convergence and

hence the need for preliminary matching. The Gaussian energy function provides a fully

automatic registration framework. Standard optimisation methods can be used because

of the differentiability of the energy function.

Burschka et al. [12] register monocular stereo images to 3D surface models. For efficient

search over the transformation space, they use covariance trees instead of k-D trees.
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Standard ICP is sensitive to outliers, i.e. a single bad correspondence will affect the

sum of squared errors that is to be minimised and hence the transformation estimate is

not robust. Standard ICP uses a closed form solution for the transformation estimate

(in the minimisation step). The problem is that a robust estimate in closed-form is not

known. So, researchers have tried robustifying ICP through

1. non-linear or RANSAC-based estimation in the minimisation step, or

2. excluding bad correspondences computed during the matching step.

Both approaches deal with outliers after they have already affected the error/distance

values. Furthermore, existing methods incur significant speed loss. Fitzgibbon [26] deals

with outliers at an early stage and provides robustness directly in the error function

that is used both in the matching and the minimisation steps. The error function is

changed to a robust kernel that gives smaller error values for outliers. Fitzgibbon replaces

the closed-form standard ICP estimate (which can not incorporate robust statistics) by

the estimate achieved through general-purpose iterative, non-linear Levenberg-Marquardt

optimisation. This estimate can incorporate robust statistics. The resulting method,

called LM-ICP, is faster, simpler to implement and robust.

Chetverikov et al. [17] introduced the Trimmed ICP (TrICP) that excludes bad cor-

respondences. It attempts to reject/trim wrong correspondences by using only those

correspondences that have the smallest distances. Correspondences are sorted by squared

distance and only a fixed fraction of them are used (Least Trimmed Squares). TrICP is

robust to rotations and noisy data and has a proved convergence.

Tarel et al. [32] renounce the correspondence based ICP approach to spatial registra-

tion. They represent 2D curve or 3D surface data by a few coefficients of an implicit

polynomial. Such implicit polynomial coefficients encode the intrinsic geometry of the

entity that they represent. This allows one-shot registration of the entities without the

use of correspondences.

1.2.2 Projective Registration

ICP has also been applied in the projective registration domain. Rosenhahn [58] regis-

ters 3D model points with 3D lines/planes constructed from 2D image points/lines. The

emphasis in that work is on the mathematical modelling of the pose problem using Con-

formal algebra. Specifically, both rigid body motion and 3D objects are modelled using

Conformal algebra.

Phong et al. [53] solved a similar problem using 2D-3D line constraints. There it is

shown that while point-point constraints can also be used to solve the problem, line-line

constraints lead to the decoupling of the rotation and translation estimation problems.

Rigid body motions are represented as dual number quaternions which are a mathematical

representation of screws. Minimisation of the error function was based on a trust-region

method instead of ICP.
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1.3 Motivation for the Implicit Approach

Phong et al. [53] state: “Since the object pose from a single view problem is nonlinear,

choices for (i) the mathematical representation of the problem, (ii) the error function

to be minimized, and for (iii) the optimization method are crucial”. Accordingly, the

mathematical representation that they use is explicit. Rigid body motion is modelled

using dual number quaternions which leads to an error function that is a sum of squares

of quadratic constraints. This, in turn, allows robust optimisation using a trust-region

method that avoids local minima and has fast convergence. The result is a robust and

fast 2D-3D pose estimation procedure.

Rosenhahn [58] showed that explicit approaches to the pose problem are faster than

free-form approaches. But he mentions that in many cases, extracting point-based fea-

tures from images is not possible. Hence the need for global i.e. free-form descriptors.

Furthermore, estimates derived from global descriptors are more accurate and robust.

This work therefore explores the free-form approach whereby objects are modelled as

algebraic surfaces. This choice has consequences on the error function to be used and the

optimisation procedure employed.

A free-form approach was also used earlier by Kriegman and Ponce [42] who used elimi-

nation theory to compute silhouette equations of parametric surfaces. They reported that

the free-form approach quickly leads to “unwieldy” silhouette equations. In that paper,

they used simple elimination techniques and mentioned that advanced techniques will

reduce the complexity of the problem. Silhouette equation computation through elimina-

tion has since remained a bottleneck that has restricted further progress in this approach.

But due to progress in computational power, advanced elimination heuristics [39][57][45]

and the development of specialised computer algebra systems such as Fermat [56], implicit

silhouette equations have become easier (but not easy) to compute and handle. In this

thesis, we therefore re-enter the implicit pose estimation problem.

1.4 Overview

The thesis is divided into 3 main topics:

1. Algebraic surface fitting,

2. Algebraic space-curve projection, and

3. Algebraic pose estimation.

After presenting the mathematical background covering rigid body motions, polynomials

and elimination theory in Chapter 2, we review surface representations in Chapter 3

where we provide justification for using algebraic implicit surfaces. The transformation

of implicit polyomials, their intrinsic geometry and fitting techniques are described in

Chapter 4. Elimination theory is used in Chapter 5 to project algebraic space-curves onto

image planes to obtain algebraic plane-curves i.e. silhouette equations. There we describe

the non-linear error function and the optimisation method used for pose estimation from

algebraic image silhouette equations. The chapter ends with some experimental results.

Finally, we present some conclusions and future outlook in Chapter 6.





Chapter 2
Background

In this chapter we will present the mathematical background needed for later chapters.

The 3 main mathematical areas employed in this thesis are

1. Rigid body motions

2. Polynomials

3. Elimination theory

Registration of two datasets is the process of identifying a geometrical transformation

that aligns the coordinate system of one with that of the other. Since we will be dealing

only with rigid objects in this thesis, the required geometrical transformation for our

problem is a rigid body transformation. We will describe rigid body motion using screw

theory.

Polynomials are required both for modelling algebraic curves and surfaces and for

obtaining silhouette equations using elimination theory.

2.1 Rigid Body Motions

As the name suggests, a rigid body motion represents the motion of rigid bodies in space.

A rigid motion of an object is a motion which preserves distance and orientation between

points [49]. This section describes rigid body motion using linear algebra and screw theory.

Other representations of rigid body motion use dual-quaternions and Clifford algebras for

which we refer the reader to [49] and [30] respectively.

A rigid body can be moved by applying a rotation followed by a translation. The same

effect can be achieved by following the motion of a screw as shown in Figure 2.1. Screw

motion can be represented by a rotation about a straight line l, called the the screw axis,

combined with a translation parallel to that line. According to Chasles theorem, every

rigid body motion can be realized by a rotation about an axis combined with a translation

parallel to that axis. That is, every rigid body motion can be modelled as a screw motion.

It should be observed that while the motion of a point on a screw is smooth, the same

point will not move smoothly if a rotation followed by a translation is applied. The net

displacement of a point for both rotation followed by translation and screw motion is the
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same but the path taken by the point, i.e. the motion is different. Screw theory provides

a geometric description of rigid motion that is useful for specific optimisation tasks. We

will use it later to linearise pose parameters.

In the following, the exponential representation of rotation in R
3 is described followed

by the exponential representation of screw motion.

Figure 2.1: A screw motion M can be achieved by a rotation of θ around the screw axis l combined

with a translation d along l. The net effect is the same as applying Euler angle rotation followed by a

translation. (Figure courtesy of [58])

2.1.1 Rotational Motion in R
3

2.1.1.1 Orthogonal Matrix Representation

The classical way of representing rotations in 3-dimensional space R
3 is by using Euler

angles. Any rotation R3 in R
3 can be generated by 3 rotations around the x, y and z

axes.

R3 = RxRyRz =





1 0 0

0 cos α − sin α

0 sin α cos α









cos β 0 sin β

0 1 0

− sin β 0 cos β









cos γ − sin γ 0

sin γ cos γ 0

0 0 1





(2.1)

where α, β and γ are the rotation angles around the x, y and z axes respectively. Rx,Ry

and Rz are the corresponding rotation matrices. Rotation matrices have the property

that they are orthogonal and have a determinant of +1. The group of such matrices

is called the “special orthogonal” group, written as SO(3). The term “special” signifies

the determinant equal to +1 property. Since they are members of a group, concatenation

results in a matrix that is also a member of the group. Therefore, R3 is also an orthogonal

matrix with determinant +1, i.e. a rotation matrix. Specifically,

R3 ∈ SO(3) = {R ∈ R
3×3|RRT = I, det(R) = +1} (2.2)

Using Euler angles, rotation is performed by multiplication of a point x ∈ R
3 with the

rotation matrix R3 to get the rotated point x′.

x′ = R3x (2.3)
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2.1.1.2 Canonical Exponential Coordinates Representation

The orthogonal matrix representation is a mathematical treatment of rotation that deals

with the initial and final positions of a point and abstracts away the physically relevant

motion part. Figure 2.2 shows two different motions resulting in the same displacement

x

z

y

B

A

l

Figure 2.2: Rotation around axis l by π/2 and −π/2 result in the same displacement A to B but different

motions.

from point A to point B. An alternative representation of rotations in R
3 is the exponen-

tial representation which can also represent the motion in addition to the displacement

captured by the Euler angles approach.

Definition 2.1. Skew-symmetric matrix A skew-symmetric matrix ω̂ ∈ R
n×n is a

square matrix whose transpose is its negative

ω̂T = −ω̂ (2.4)

The group of all 3 × 3 skew-symmetric matrices is denoted as so(3) and is written as

so(3) =
{
ω̂ ∈ R

3×3|ω ∈ R
3
}

(2.5)

There is a one-to-one mapping between vectors in R
3 and skew-symmetric matrices in

so(3) which implies that

Lemma 2.1.1. A matrix M ∈ R
3×3 is skew-symmetric if and only if M = ω̂ for some

ω ∈ R
3.

The ˆ is called the hat operator and it constructs a skew-symmetric matrix from the

corresponding vector. For example, for ω = (ω1, ω2, ω3)

ω̂ =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





The reverse operation of extracting the vector from the skew-symmetric matrix is denoted

by the vee operator ∨.
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To see the role played by skew-symmetric matrices in obtaining an exponential rep-

resentation of rotation, consider a trajectory R(t) : R → SO(3) describing a continuous

rotational motion, the rotation must satisfy the orthonormality constraint

R(t)RT (t) = I

Derivating with respect to time t we get

Ṙ(t)RT (t) + R(t)ṘT (t) = 0

⇒Ṙ(t)RT (t) = −R(t)ṘT (t)

⇒Ṙ(t)RT (t) = −(Ṙ(t)RT (t))T

which shows that Ṙ(t)RT (t) ∈ R
3×3 is a skew-symmetric matrix. Lemma 2.1.1 then

implies that there exists a vector ω(t) ∈ R
3 such that

Ṙ(t)RT (t) = ω̂(t)

Multiplying both sides from the right by R(t) gives

Ṙ(t) = ω̂(t)R(t) (2.6)

If at some time t = t0, R(t0) = I, then from (2.6)

Ṙ(t0) = ω̂(t0) (2.7)

This shows that ω̂ is tangent to R at I. More generally, the space of skew-symmetric

matrices is the tangent space1 at identity of the rotation group SO(3). Hence the

terminology so(3). At R 6= I the tangent space Ṙ is the tangent space at identity

i.e. so(3) transformed to R by multiplication by R from the right (see (2.6)). From the

above observations, we see that around the identity matrix I, a skew-symmetric matrix

gives a first-order approximation to a rotation matrix:

R(t0 + dt) ≈ I + ω̂(t0)dt (2.8)

For the case of rotation around a fixed axis (constant ω) (2.6) becomes

Ṙ(t) = ω̂R(t)

which is a time-invariant linear differential equation whose solution is

R(t) = exp(ω̂t)R(0) (2.9)

where exp(ω̂t) is the matrix exponential

exp(ω̂t) =

∞∑

k=0

(ω̂t)k

k!
(2.10)

= I + ω̂t +
(ω̂t)2

2!
+ · · ·+ (ω̂t)k

k!
(2.11)

1Since SO(3) satisfies the properties of a Lie group, its tangent space at identity i.e. so(3) is its Lie alge-

bra. [31] [49]
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Assuming R(0) = I as the initial condition in (2.9) we get the so-called exponential map

R(t) = exp(ω̂t) (2.12)

that maps so(3) to SO(3). The components of ω, i.e. (ω1, ω2, ω3) are therefore known as

exponential coordinates of rotation. Equation (2.12) states that taking the exponential of

a skew symmetric matrix ω̂t results in a matrix R representing a rotation of t radians

around the unit vector ω.

The exponential map in (2.12) involves the non-trivial task of taking the exponential

of the matrix exp(ω̂, t). An efficient method for computing matrix exponentials is given

by the Rodrigues’ formula [49]

eω̂t = I + ω̂ sin(t) + ω̂2(1 − cos(t)) (2.13)

2.1.2 Rigid Motion in R
3

2.1.2.1 Matrix Representation

As stated earlier, rigid body motion is composed of a rotation and translation. For

x,x′, t ∈ R
3 and R ∈ SO(3) this can be written as

x′ = Rx + t (2.14)

Using the homogeneous representation x of x

x =







x1

x2

x3

1







(2.15)

we can write (2.14) as

x′ =

(
x′

1

)

=

(
R t

0 1

) (
x

1

)

=

(
R t

0 1

)

x (2.16)

So in homogeneous space, a rigid body motion is performed by multiplying the homoge-

neous representation x of a point x with the 4 × 4 motion matrix M where

M =

(
R t

0 1

)

(2.17)

All such matrices representing rigid body motions belong to a group denoted by SE(3)

or the “special Euclidean” group. Here too, the term “special” signifies that the matrix

R ∈ SO(3) in M is a special orthogonal matrix.

SE(3) =

{

M =

(
R t

0 1

)

|R ∈ SO(3), t ∈ R
3

}

∈ R
4×4 (2.18)

Just as for the case of rotational motion in R
3, rigid body motion also has an alternate

exponential representation.
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2.1.2.2 Canonical Exponential Coordinates Representation

Similar to the exponential map from so(3) to SO(3), there exists an exponential map from

the tangential space se(3) to the group of rigid transformation matrices SE(3) where

se(3) := {(v, ω̂)|v ∈ R
3, ω̂ ∈ so(3)}· (2.19)

Elements of se(3) are called twists and can be written as

ξ̂ =

[
ω̂ v

0 0

]

∈ R
4×4· (2.20)

ξ := (v, ω) ∈ R
6 are called the twist coordinates of the twist ξ̂ ∈ se(3). Given a twist

ξ̂ ∈ se(3), the exponential map is given by

eξ̂ =

[
eω̂ (I − eω̂)ω̂v + ωωTv

0 1

]

(2.21)

where eω̂ is computed using Rodrigues’ formula (equation (2.13)).

Twists are infinitesimal generators of screw motions and provide a means for repre-

senting combined rotation and translation. They can be exploited for numerical pose

recovery and for modelling joints in 3D space. For a detailed and accessible introduction

to rigid body motions and the proofs and derivations for the exponential representations

of rotation and screw motion, the reader is referred to chapter 2 of [49] and [46].

2.2 Polynomials

A polynomial is a mathematical expression involving a sum of powers in one or more

variables multiplied by coefficients. A 2D polynomial f(x1, x2) of degree 3 can be written

as

f(x) = a00
︸︷︷︸

H0

+ a10x1 + a01x2
︸ ︷︷ ︸

H1(x)

+ a20x
2
1 + a11x1x2 + a02x

2
2

︸ ︷︷ ︸

H2(x)

+ a30x
3
1 + a21x

2
1x2 + a12x1x

2
2 + a03x

3
2

︸ ︷︷ ︸

H3(x)

=

3∑

r=0

Hr(x) (2.22)

The individual summands such as a21x
2
1x2 are called monomials, whereas the products of

the variables without the coefficients, such as x2
1x2 are called terms2. A monomial can

be written as aαx
α where α is a multi-index of the term’s powers. For example, for the

monomial a21x
2
1x2, the term powers are (2, 1) and hence α can be written as the vector

2also called the monomial basis
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[2, 1]t. |α| is the sum of the powers and is called the degree of the monomial. So the

degree of the monomial a21x
2
1x2 is 2 + 1 = 3. The degree of the polynomial is the highest

degree amongst its monomials.

When all monomials in a polynomial are of the same degree r, the polynomial is called

a form of degree r. Any polynomial of degree d can be decomposed into forms of degree

≤ d as shown in equation (2.22) where each Hr(x) is a form of degree r since it contains

terms of degree r only. In a form of degree r, there are

hr =

(
n + r − 1

n − 1

)

monomials (and hence coefficients) and in a polynomial of degree d, there are

h = hd + hd−1 + . . . + h0 =

(
n + d

n

)

coefficients. The coefficients Fα of the polynomial f of degree d are equal to the partial

derivatives of order d evaluated at the origin:

Fα =
∂α1+...+αnf

∂xα1
1 . . . ∂xαn

n

|x=0

In vector notation a polynomial f consisting of k monomials can be written as

f = mT a (2.23)

where m is the k×1 column vector of terms and a is the k×1 column vector of polynomial

coefficients. For example, a 2D polynomial f of degree 3 consists of k =
(
2+3
2

)
= 10

monomials and can be written as

f(x, y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy2 + a03y
3

=
[
1 x y x2 xy y2 x3 x2y xy2 y3

]




















a00

a10

a01

a20

a11

a02

a30

a21

a12

a03




















= mT a

Extension to nD polynomial of degree d is straight-forward.

2.3 Elimination Theory

Elimination theory is a classical branch of mathematics that was introduced for solving

systems of polynomial equations [68]. It is a central piece of algebraic geometry that
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deals with conditions and methods for eliminating variables to get equivalent problem

formulations. Elimination is the algebraic counterpart of the geometric concept of projec-

tion. By eliminating variables, an algebraic variety is projected onto a lower dimensional

subspace [19]. The basic idea is to eliminate variables from a given set of polynomials to

obtain a new set of polynomials whose vanishing is a necessary (and sometimes sufficient)

condition for solutions to exist.

Elimination of n variables from a system of n + 1 polynomial equations yields a single

polynomial called the resultant of the system. For the system to have any solutions, the

vanishing of such a resultant is a necessary condition. If a certain monomial ordering

is used then the resultant of a polynomial system is an element of the Gröbner basis of

the ideal represented by the system [19][38]. However, computing Gröbner bases is an

expensive procedure and not feasible for resultant computations in practical problems.

The more effective and popular alternative is a determinantal formulation of elimina-

tion. In this approach a matrix is constructed from the coefficients of the polynomials

such that the determinant of this matrix is the resultant (or a multiple of the resultant).

2.3.1 Gröbner Bases

The Gröbner bases approach views polynomial systems as algebraic ideals and their

common solutions as algebraic varieties. In this section we will follow the treatment

of Gröbner basis in [19].

Definition 2.2. A subset I ⊂ k[x1, . . . , xn] is an ideal if it satisfies:

1. 0 ∈ I.

2. If p1, p2 ∈ I, then p1 + p2 ∈ I.

3. If p1 ∈ I and p3 ∈ k[x1, . . . , xn], then p3p1 ∈ I.

The definition of an ideal is analogous to the concept of a subspace in linear algebra.

Both are closed under addition and multiplication with the exception that, for a subspace,

we multiply by scalars, whereas for an ideal, we multiply by polynomials. A variety

V(p1, . . . , pm) is the set of all solutions of the system of equations p1(x1, . . . , xn) = · · · =

pm(x1, . . . , xn) = 0.

Definition 2.3. Let k be a field and p1, . . . , pm be a finite set of polynomials in

k[x1, . . . , xn]. Then

V(p1, . . . , pm) = {( a1, . . . , an) ∈ kn : pi(a1, . . . , an) = 0 for all 1 ≤ i ≤ m}·

V(p1, . . . , pm) is the variety defined by p1, . . . , pm.

Given a finite set of polynomials p1, . . . , pm ∈ k[x1, . . . , xn], the ideal generated by

p1, . . . , pm is written as

〈p1, . . . , pm〉 =

{
m∑

i=1

qipi : q1, . . . , qm ∈ k[x1, . . . , xn]

}

·

Varieties are determined by ideals.
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Proposition 1. If I = 〈p1, . . . , pm〉, then V(I) = V(p1, . . . , pm).

Proof. See [19].

This shows that even though a nonzero ideal always contains infinitely many different

polynomials, the set V(I) can still be defined by a finite set of polynomial equations.

The polynomials (p1, . . . , pm) therefore form a basis for the ideal I = 〈p1, . . . , pm〉. How-

ever, it is not the unique basis. 〈p1, . . . , pm〉 can have other bases too. This is where

Gröbner bases come into the picture. Gröbner bases are special bases or generators of

polynomial ideals that have easier and more useful computational properties compared to

the ideals themselves. Hence a variety corresponding to an ideal can be computed more

efficiently by replacing the ideal generators by simpler generators, i.e. a Gröbner basis.

If a certain variable ordering, known as the elimination order, is used then the resulting

Gröbner basis (called the elimination ideal) contains the resultant as one of its elements.

Example 1 illustrates elimination using a Gröbner basis and also shows that elimination

of variables implies projection onto a lower dimensional subspace.

-2 -1 0 1 2
-2

-1

0

1

2

Figure 2.3: Elimination implies projection. The circle and the line can be represented as a polynomial

ideal I whose common solutions (shown in blue) constitute the variety V(I) whose projection onto the

x-axis (shown in green) can be obtained by eliminating the variable y from the ideal I.

Example 1. Figure 2.3 shows a circle of radius 1 centered at the origin and the line

y = x. They can be represented as a polynomial ideal I

I =< x2 + y2 − 1, y − x >

whose common solutions (shown in blue) constitute the variety V(I) whose projection onto

the x-axis (shown in green) can be obtained by eliminating the variable y from the ideal

I. One can solve the system to get V(I) = {(− 1√
2
,− 1√

2
), ( 1√

2
, 1√

2
)} and the projection

π(V(I)) = {− 1√
2
, 1√

2
}. We can use SINGULAR3 to compute the Gröbner basis for I and

show that it contains a polynomial that represents the projection π(V(I)).

> ring r=0,(y,x),lp; //declare polynomial ring Q[x,y] using lex ordering

> ideal I=x^2+y^2-1,x-y; //declare ideal I

> ideal G=groebner(I); //compute the Groebner basis

> G; //display the Groebner basis

G[1]=2x^2-1

G[2]=y-x

3www.singular.uni-kl.de
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The Gröbner basis contains two elements. The first element 2x2 − 1 can be solved for

x to give {− 1√
2
, 1√

2
} which is the same as π(V(I)). The point to be noted is that by

eliminating y from the ideal I, we obtained a new polynomial that is the

projection of a 2-dimensional variety V(I) onto the 1-dimensional x-axis.

For this simple example, Gröbner basis computation is not necessary. Instead, one can

eliminate y by substituting y = x in the equation of the circle to obtain 2x2 − 1 as before.

However, for complex examples involving more polynomials and in higher degrees, such

elimination by substitution is not feasible.

In this work we treat Gröbner bases as a black-box and hence we do not explain how a

Gröbner basis is constructed from a polynomial set. The main algorithm for doing so is the

Buchberger algorithm. The interested reader can find an explanation of ideals, varieties,

the Buchberger algorithm and the use of Gröbner bases for elimination in [19],[20].

Even though Gröbner bases provide an elegant theory for dealing with geometric ob-

jects algebraically, they are not the most favoured choice when it comes to elimination.

This is inspite of the increase in computational power over the years and the development

of highly tuned Gröbner bases systems like SINGULAR. The bottleneck is that Gröbner ba-

sis computation may run into a phenomenon called intermediate expression swell whereby

even though the original polynomial set and the final Gröbner basis might have modest

size (i.e. few low degree polynomials), the Buchberger algorithm may produce an enormous

number of high degree intermediate polynomials with huge coefficients [23]. Mayr and

Meyer [47] showed that explosions in polynomial degrees during Gröbner basis computa-

tions are inevitable. Generally, Gröbner bases are inferior to resultant based elimination

in terms of speed and memory usage [38][36].

Resultant based elimination has proved to be faster and more applicable in problems

of practical interest. A major drawback in all current resultant based approaches is the

existence of spurious factors which need to be factored out heuristically to obtain the

correct irreducible resultant of the system.

2.3.2 Resultants

The resultant of a polynomial system is a polynomial in the coefficients of the original

polynomials. The original variables do not appear in the resultant, hence they are elimi-

nated. The key idea in resultant based elimination is that a system S of polynomials has

common roots if and only if the resultant R(S) vanishes [54]. In this way, the expression

R = 0 is an equivalent formulation of the problem expressed by S = 0. A simple example

of resultant based elimination is that for a square system of homogeneous linear equa-

tions, a necessary and sufficient condition for a non-trivial4 solution to exist is that the

determinant of this system vanishes. Consider the following system of linear equations.

x − y − 3 = 0

−x − y = 0

x − 3

2
= 0

4not all zeros.
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Its homogeneous representation with homogenising variable w is

x − y − 3w = 0

−x − y = 0

x − 3

2
w = 0

which can be written as




1 −1 −3

−1 −1 0

1 0 −3
2









x

y

w



 =





0

0

0



 ·

This system is satisfied when all of x, y and w are 0. This is the trivial solution with no

counterpart in affine space. For a non-trivial solution to exist, the necessary and sufficient

condition is the vanishing of the determinant of the system, i.e. the determinant of the

3×3 system matrix shown above. Since the determinant of this matrix is 0, we can expect

to find a solution for the system. Indeed, the point ( 3
2
,−3

2
) satisfies all 3 equations of the

original system.

This method works for linear equations. For systems of higher-order polynomial equa-

tions, the necessary and sufficient condition is vanishing of resultants. There exist many

resultant formulations such as Sylvester [36][68], Macaulay [69], Dixon [39][37][38][18] and

Sparse [25][24]. Here, we will only describe the Sylvester resultant for introductory pur-

poses and the Dixon resultant since it has been shown to be more efficient than other

formulations for a wide variety of applications [18].

Starting with the simplest case of 2 univariate polynomials, a necessary and sufficient

condition for their solution to exist is the vanishing of the so-called Sylvester resultant

presented next in Section 2.3.2.1.

Remark Although current literature employs terms like Sylvester resultant, Macaulay

resultant, Dixon resultant, etc., none5 of them yields the exact resultant in all cases. The

determinant for all such methods is a multiple of the exact resultant which then needs to

be factored out. For this reason, we will follow [39] in calling the determinants projection

operators. With this terminology, technically all the following ‘resultants’ should be called

projection operators but we stick with the term resultant to conform with the literature.

2.3.2.1 The Sylvester Resultant

Given a system 2 univariate polynomials p1(x), p2(x) ∈ Q[x] of degrees n and m respec-

tively,

p1(x) =

n∑

α=0

p1α
xα,

p2(x) =

m∑

α=0

p2α
xα

5Macaulay resultant is the exact resultant for the case of generic homogeneous polynomials.
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the Sylvester resultant, R(p1, p2), of the system is given by the determinant of the Sylvester

matrix

R =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p10 0 0 · · · 0 p20 0 0 · · · 0

p11 p10 0 · · · 0 p21 p20 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

p1n
p1n−1 p1n−2 · · · p1n−m+1 p2n

p2n−1 p2n−2 · · · p20

0 p1n
p1n−1 · · · p1n−m+2 p2n+1 p2n

p2n−1 · · · p21

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · p1n
0 0 0 · · · p2m

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

·

The polynomials p1 and p2 have common roots when the resultant R vanishes, i.e. R = 0.

Note that the R does not contain the original variable x which has been eliminated.

f

P (x) = 0

Q(x) = (x − f) · ∇P (x) = 0

Figure 2.4: A sphere represented as an implicit algebraic surface P (x) = 0 and 4 lines that are part of

its tangent cone. The blue points satisfy the tangency condition Q(x) = (x − f) · ∇P (x) = 0 with respect

to the point f .

Example 2. As an example we will use the Sylvester resultant to compute the tangent

cone of an arbitrary sphere of radius r centered at (a, b, c) when viewed from the origin.

The tangent cone of an object viewed from a point f consists of all lines tangent to the

object’s surface and passing through f as shown in Figure 2.4. A sphere of radius r

centered at (a, b, c) can be represented as an algebraic surface given by the polynomial

P (x) = (x − a)2 + (y − b)2 + (z − c)2 − r2 = 0.

Any point x on the sphere that also lies on a line tangent to the sphere and passing through

f satisfies the tangency condition

Q(x) = (x − f) · ∇P (x) = 0.

The blue points on the sphere in Figure 2.4 satisfy the tangency condition. If we introduce

a parameter t and write the sphere equation as P (xt) = 0 and the tangency condition as

Q(xt) = 0, then it can be seen that as t is varied, the blue points satisfying the tangency

condition move along the tangent lines. Equivalently, t parameterises the tangent cone.
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For convenience and w.l.o.g6, we can set f as the origin. So, when viewed from the

origin (f = 0), the tangent cone of our sphere satisfies the parametric polynomial system

S = {P (xt), Q(xt)} which can be written as

P (xt) = (xt − a)2 + (yt − b)2 + (zt − c)2 − r2

= (x2 + y2 + z2)t2 − 2(ax + by + cz)t + (a2 + b2 + c2 − r2) = 0,

Q(xt) = x · ∇P (xt)

= 2(x2 + y2 + z2)t2 − 2(ax + by + cz)t = 0·

P and Q can be treated as univariate polynomials in t. Eliminating t from the system

gives the equation of the tangent cone. The Sylvester matrix for this system is given by









x2 + y2 + z2 −2ax − 2by − 2cz a2 + b2 + c2 − r2 0

0 x2 + y2 + z2 −2ax − 2by − 2cz a2 + b2 + c2 − r2

2x2 + 2y2 + 2z2 −2ax − 2by − 2cz 0 0

0 2x2 + 2y2 + 2z2 −2ax − 2by − 2cz 0










which has determinant

4 · (x2 + y2 + z2) · (a2 + b2 + c2 − r2)

· (a2z2 + a2y2 − 2byax − 2axcz − z2r2 − y2r2 + z2b2 + y2c2 − 2bycz + x2b2 + x2c2 − x2r2)·

The resultant of the polynomial system is that factor of the determinant which contains

all the variables. Therefore, it can be seen that in the above expression the last factor

a2z2 + a2y2 − 2byax − 2axcz − z2r2 − y2r2 + z2b2 + y2c2 − 2bycz + x2b2 + x2c2 − x2r2

is the resultant. The tangent cone is given by the vanishing resultant. So for a sphere

of radius 1 centered at (0, 0, 5) and viewed from the origin we substitute (a, b, c, r) by

(0, 0, 5, 1) in the expression for the resultant to get the implicit equation for the tangent

cone as

C(x) = 24x2 + 24y2 − z2 = 0·

2.3.2.2 The Dixon Resultant

The Sylvester matrix of two polynomials p1, p2 of degrees n, m is an (n + m) × (n + m)

matrix. In contrast, the Cayley-Dixon7 matrix for the same problem is an n × n matrix.

Cayley’s formulation for the resultant of two univariate polynomials is as follows. Replace

x by α in both p1(x) and p2(x) to get the polynomials p1(α) and p2(α). Then form the

cancellation matrix whose determinant

4(x, α) =

∣
∣
∣
∣

p1(x) p2(x)

p1(α) p2(α)

∣
∣
∣
∣

6without loss of generality
7The method was originally developed by Bezout in 1779, Cayley reformulated it and Dixon extended it to

the bivariate case.
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is a polynomial in x and α and vanishes when x = α. This means that the determinant

4(x, α) has (x − α) as a factor. The polynomial

δ(x, α) =
4(x, α)

(x − α)
=

p1(x)p2(α) − p2(x)p1(α)

(x − α)

is then an n − 1 degree polynomial in α and is symmetric in x and α. It is called the

Dixon polynomial. It vanishes at every common zero x0 of p1(x) and p2(x) regardless of

the value of α. This implies that at x = x0, the coefficient of every power product of α

in δ(x, α) should be 0. Since δ(x, α) is an n − 1 degree polynomial in α, the number of

power products of α is n (i.e. αi for each 0 ≤ i 6 n−1). This gives n equations which are

polynomials in x with maximum degree n − 1. Any common zero of p1(x) and p2(x) is a

solution of these n polynomial equations and these n equations have a common solution

if the determinant of their coefficient matrix vanishes. The coefficient matrix is called the

Dixon matrix since Dixon later generalised Cayley’s formulation.

Example 3. We computed the tangent cone of a sphere using the Sylvester resultant

in example 2. We now recompute it using the Dixon resultant. We treat the system as

consisting of polynomials in t and introduce α as the new variable to obtain the cancellation

matrix
[
P (t) Q(t)

P (α) Q(α)

]

from which we can obtain the following Dixon polynomial:

δ(t, α) =
4(t, α)

(t − α)

= − 2x2ta2 − 2a2ty2 + 2a3x + 2b3y + 2c3z − 2a2tz2 + 2a2yb + 2a2zc − 2y2tb2

− 2b2tx2 − 2b2tz2 + 2b2xa + 2b2zc − 2z2tc2 − 2c2tx2 − 2c2ty2 + 2c2xa + 2c2yb

+ 2r2tx2 + 2r2ty2 + 2r2tz2 − 2r2xa − 2r2yb − 2r2zc + 2x3taα + 2y3tbα

+ 2z3tcα − 2a2αx2 − 2a2αy2 − 2a2αz2 − 2b2αx2 − 2b2αy2 − 2b2αz2

− 2c2αx2 − 2c2αy2 − 2c2αz2 + 2r2αx2 + 2xtaαy2 + 2xtaαz2

+ 2ytbαx2 + 2ytbαz2 + 2ztcαx2 + 2ztcαy2 + 2r2αy2 + 2r2αz2·

Recall that for all common zeros t0 of P and Q, the Dixon polynomial has to vanish

regardless of the value of α. This implies that for all t0, the coefficients of powers of α

become zero. This yields the following 2 (= n + 1) equations (one each for α0 and α1):

(−2b2x2
− 2c2x2

− 2b2y2
− 2b2z2 + 2r2y2

− 2c2z2
− 2c2y2 + 2r2z2

− 2a2y2 + 2r2x2
− 2a2z2

− 2a2x2)t

+2a2zc + 2a2yb + 2c2yb + 2c3z + 2a3x + 2c2xa + 2b3y + 2b2zc + 2b2xa − 2r2yb − 2r2xa − 2r2zc = 0

(2x3a + 2xaz2 + 2z3c + 2y3b + 2xay2 + 2zcy2 + 2ybx2 + 2ybz2 + 2zcx2)t

−2b2x2
− 2c2x2

− 2b2y2
− 2b2z2 + 2r2y2

− 2c2z2
− 2c2y2 + 2r2z2

− 2a2y2 + 2r2x2
− 2a2z2

− 2a2x2 = 0

which can be written as

[
−2b2x2

− 2c2x2
− 2b2y2

− 2b2z2 + 2r2y2
− 2c2z2

−2c2y2 + 2r2z2
− 2a2y2 + 2r2x2

− 2a2z2
− 2a2x2

2a2zc + 2a2yb + 2c2yb + 2c3z + 2a3x + 2c2xa

+2b3y + 2b2zc + 2b2xa − 2r2yb − 2r2xa − 2r2zc

2x3a + 2xaz2 + 2z3c + 2y3b + 2xay2 + 2zcy2

+2ybx2 + 2ybz2 + 2zcx2

−2b2x2
− 2c2x2

− 2b2y2
− 2b2z2 + 2r2y2

− 2c2z2

−2c2y2 + 2r2z2
− 2a2y2 + 2r2x2

− 2a2z2
− 2a2x2

]

[
t

1

]
=

[
0

0

]
·
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The 2 × 2 matrix in the above expression is the Dixon matrix for the polynomial system

{P, Q}. For the Dixon polynomial δ(t, α) to vanish the determinant of the Dixon matrix

(i.e. the Dixon projection operator) has to vanish. The Dixon projection operator is

4 · (x2 + y2 + z2) · (a2 + b2 + c2 − r2)

· (a2z2 + a2y2 − 2byax − 2axcz − z2r2 − y2r2 + z2b2 + y2c2 − 2bycz + x2b2 + x2c2 − x2r2)·

The last factor contains all the variables and is therefore the exact resultant. Note that it

is the same as the Sylvester resultant obtained earlier.

Dixon extended Caley’s formulation of the two polynomial univariate case to the three

polynomial bivariate case. Kapur et al. [39] generalised8 it further to the multivariate case.

We present the multivariate formulation for computing the Dixon projection operator.

Let X = {x1, . . . , xn} be a set of n variables and P = {p1, . . . , pn+1} a set of n + 1

polynomials in k[x1, . . . , xn]. Form the set X = {x1, . . . , xn} of n new variables. Construct

the (n + 1) × (n + 1) cancellation matrix CP of P :

CP =










p1(x1, x2, . . . , xn) . . . pn(x1, x2, . . . , xn)

p1(x1, x2, . . . , xn) . . . pn(x1, x2, . . . , xn)

p1(x1, x2, . . . , xn) . . . pn(x1, x2, . . . , xn)
... . . .

...

p1(x1, x2, . . . , xn) . . . pn(x1, x2, . . . , xn)










· (2.24)

Similar to Cayley’s univariate case, (xi − xi) is a zero of |CP | for all 1 ≤ i ≤ n. As an

example, if we set x1 = x1, the first two rows of CP will become identical, thus causing the

determinant to become zero. Therefore
∏n

i=1(xi − xi) divides |CP | and can be cancelled

out. This gives us the Dixon polynomial

δP =
|CP |

∏n
i=1(xi − xi)

· (2.25)

We can treat δP as a polynomial in X and extract the set F of its coefficients which are

polynomials in X. The Dixon matrix DP is the coefficient matrix of F . Being a coefficient

matrix, DP will not contain any of the variables in X. Hence the variables in X will be

eliminated in the expression for the Dixon projection operator |DP |.

8Dixon alluded to such a generalisation which is why the formulation is known under Dixon’s name





Chapter 3
Surface Representations

3.1 Surface Representations

3D surfaces can be described mathematically in different forms. The most common ones

are given in

• Explicit form: z = f(x, y),

• Parametric form: p = [x(u, v), y(u, v), z(u, v)],

• Implicit form: f(x, y, z) = 0,

Table 3.1 shows the explicit, parametric and implicit representations for a sphere of radius

r centered at the origin. The explicit representation was used to render the sphere shown

in Figure 3.1. In the following, each representation is described in more detail along with

a discussion of the advantages and disadvantages of using a particular representation.

Name Representation

Explicit

z = f(x, y) =
√

r2 − x2 − y2

where

x, y ∈ [−r, r] are given as explicit point pairs.

Parametric

p = [x(u, θ), y(u, θ), z(u, θ)]

where

u ∈ [−r, r],

θ ∈ [0, 2π],

x(u, θ) =
√

r2 − u2 cos(θ),

y(u, θ) =
√

r2 − u2 sin(θ),

z(u, θ) = u

Implicit f(x, y, z) = x2 + y2 + z2 − r2 = 0

Table 3.1: The explicit, parametric and implicit representations for the boundary of a sphere of radius

r centered at the origin.
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Figure 3.1: A sphere rendered using the explicit representation.

3.1.1 Explicit Surfaces

In an explicit representation one explicitly writes down the points that belong to the

surface. Popular explicit representations include triangulated surfaces. Graphics designers

and animators have tended to prefer explicit models because with them it is relatively

easy to control shapes in an intuitively pleasing way. However, they are not well-suited

for fitting and automated modelling purposes [60]. Also, it is difficult to confirm if an

arbitrary point is on, inside or outside an explicit surface. Since it describes only explicitly

where the available data points are, interpolation and computation of surface gradients

is problematic. Another disadvantage of explicit representations is that tracking of large

deformations and topological changes of the surface is quite difficult [73]. For instance,

since connectivity of the explicit points determines the triangulation of a 3D surface,

changes in connectivity due to surface deformations can pose problems for triangulation

algorithms. Figure 3.2 shows an object represented as an explicit set of points and the

associated connected mesh.

Figure 3.2: An object represented as an explicit set of points and the associated connected mesh.

3.1.2 Parametric Surfaces

In parametric form, points on the surface can be specified in terms of the parametric

variables (u, v) which can be restricted, without loss of generality, to lie on the unit square

[0,1]×[0,1]. Parametric surfaces have the useful ability to identify specific locations on

a surface. A common parametric form is the nonuniform rational B-spline (NURBS)

(Figure 3.3) defined as

S(u, v) =
∑

i

∑

j

Bh
i,jNi,k(u)Mi,l(v) (3.1)
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where Ni,k(u) and Mi,l(v) are rational B-spline functions of order k and l, and Bh
i,j are

the homogeneous coordinates of control points [13].

Parametric forms can be used to represent complex object geometries and generate

realistic views. The use of control points allows local finite control of the surface which

allows accurate modelling of objects. Complex objects can be modelled using parametric

patches that are joined together. However, fitting of parametric patches to arbitrary sur-

face regions is not easy. Furthermore, control points determining the shape of a parametric

surface are not easily detectable and non-unique. Campbell and Flynn [13] propose using

parametric forms for initial object specification from which a polygonal mesh or other

representation can then be generated.

(a) Mesh of a NURBS surface patch. (b) Shaded NURBS surface patch.

Figure 3.3: A curved NURBS patch depicted as a mesh (a) and as a shaded surface (b). The control

points shown in green provide local control over the surface.

3.1.3 Implicit Surfaces

Implicit representations define objects implicitly as a particular isocontour (usually 0)

of some function f . An implicit surface is mathematically defined as the set of points

x ∈ R
3, satisfying the implicit function f(x) = 0, where f : R

3 → R. It is also called

the zero set or kernel of f and sometimes written as f−1(0). Points on the inside and the

outside of the surface are usually chosen to have opposite signs.

Implicit surface representations include some very powerful geometric properties. For

example, it is trivial to determine if an arbitrary point is inside, outside or on the surface.

This is difficult to do with explicit representations. Implicit functions make both simple

Boolean operations such as surface intersection and union easy to apply. Constructive

solid geometry (CSG) reduces to merely looking at the signs of implicit functions without

the need to consider geometry or topology [71]. With implicit surfaces, surface gradient,

normal and curvature as well as volume and surface integrals can be easily defined. Well-

developed level set methods [52] can be used with implicit surfaces to handle dynamic

surfaces with changing topology.
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An implicit surface is quite different from explicit and parametric surfaces. Whereas

explicit surfaces have specific point coordinates and parametric surfaces have specific

surface coordinates, implicit surfaces allow no such surface navigation. However, the

simple inside/outside tests associated with implicit surfaces make them ideal for shape

transformation, collision detection, CSG, and blending. Implicit surfaces are smoother

and more compact than explicit polygonal meshes but are harder to deform and visualise

in real time since that requires finding the zero set of an implicit function in 3D space. As

compared to parametric surfaces, they lack local surface control which makes them less

suitable for modelling. However, they are easier to fit, easier to blend, and do not suffer

from topology problems. They are well-suited for simulating physically based processes

and for modelling smooth objects. They can be collided and deformed, with fusions and

separations handled automatically [71].

Implicit surfaces have two important classes depending on the way the implicit function

f is defined:

1. Blobby Surfaces

2. Algebraic Surfaces

3.1.3.1 Blobby Surfaces

For blobby or metaball surfaces the implicit function f is a sum of radially symmetric

functions with Gaussian profiles. The general form is

f(x) = −t +

n∑

i=1

hi(x) (3.2)

where hi describes the Gaussian profile of a blobby sphere and t represents the isocontour

threshold. Typically, the blobby sphere function hi is of the form

hi(x) = e|x−ci|2/σ2
i (3.3)

where ci is the center of the sphere and σi is the standard deviation of the Gaussian

which controls the radius of the sphere. Figure 3.4 shows an implicit surface formed by

three blobby spheres. One can notice the blobbiness via the smooth blending of the three

individual surfaces into each other.

Figure 3.4: An implicit surface constructed from 3 blobby spheres. The individual surfaces blend smoothly

into each other as the spheres are brought closer on the right.
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3.1.3.2 Algebraic Surfaces

For algebraic surfaces the implicit function f is a polynomial expression in x, y and z.

Figure 3.5 shows two algebraic surfaces formed using polynomials of degree 4. Algebraic

surfaces can interpolate between data points in order to handle missing data and they

also have a smoothing property for handling noise and perturbations in data [8][64].

Coefficients of polynomials representing algebraic entities encode useful information about

(a) f(x, y, z) = x3y + y3z + z3x = 0 (b) f(x, y, z) = x4 + y4 + z4
− 200xyz = 0

Figure 3.5: Two algebraic implicit surfaces defined by the 4th degree polynomials.

the represented entity [66]. This information includes

1. Algebraic invariants that help in classifying and recognising different objects

[43][44][34][40].

2. Intrinsic surface geometry that helps in registration [32].

Algebraic implicit surfaces are particularly appealing in the context of spatial registration

because of the second property. Polynomial coefficients of an algebraic entity can be used

to estimate its center and orientation vectors which together make up the entity’s intrin-

sic reference frame. This is explained in Section 4.2. Given such intrinsic information,

the problem of registering two objects reduces to alignment of their intrinsic reference

frames. This obviates the need for iteratively finding correspondences needed by explicit

registration approaches such as ICP [6].

However, the property of algebraic surfaces that is useful in the projective registration

domain is that image outlines of algebraic surfaces completely determine their projec-

tive geometry [22]. This implies that algebraic curve equations representing the image

outlines of projections of algebraic surfaces can be computed given the algebraic surface

equation and the camera projection matrix. Given an algebraic surface, elimination the-

ory can be used to compute the surface’s tangent cone [54] as viewed from a certain point.

Figure 3.6 shows the tangent cone of a torus when viewed from the origin. Elimination
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theory can also be used to compute the occluding contour of an algebraic surface’s pro-

jection [42]. The silhouette-based 2D-3D pose estimation method in this thesis is based

on this property.

Figure 3.6: Tangent cone of a torus viewed from the origin.

To summarise, the main advantages of implicit surfaces include topological flexibility,

compact representation and efficient computation of various surface operations. Moreover,

algebraic implicit surfaces are particularly suited for the pose recovery problem. The

interested reader is referred to [9] for a nice introduction to implicit surfaces. Table 3.2

presents a comparison of the different surface representation techniques.

Explicit Parametric Implicit

Data Interpolation Difficult Easy Easiest

Smoothness No Yes Yes

Compact Representation No Yes Yes

Visualisation Easy Easy Difficult

Surface Operations Bad Good Very Good

Topology Preserving Deformation Difficult Easy Easiest

Local Shape Control Yes Yes No

Gradient Computation Bad Good Good

Table 3.2: Comparison of surface representations

3.1.3.3 Literature Overview of Implicit Surfaces

Even within the domain of implicit surface representations, various approaches exist in

order to satisfy application specific requirements ranging from modelling to deforming.

Modelling and Fitting Ilic and Fua [60] present a technique for switching from

explicit to implicit surfaces that takes advantage of the strengths of both approaches.

Each explicit facet in a triangular mesh is replaced by a metaball whose parameters

depend on the geometry of the explicit facet. In this way, explicit and implicit surface

deformations can be performed in-tandem and implicit surfaces can share the advantage

of explicit surfaces having more intuitive deformations. In contrast, variational [67] and

algebraic [32] surfaces are controlled not only by the positions of the radial basis functions

but also their weights which do not have a geometric interpretation. This makes in-tandem

deformation of explicit and implicit surfaces difficult.
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For fast surface reconstruction from 3D point sets, Zhao et al. [73] enclose 3D data

by an implicit surface and then shrink it to wrap the data. For this they use a surface

energy functional and level set methods.

Turk and O’Brien [67] introduced a different kind of surface creation method through

variational interpolation of scattered data. The resulting surfaces are called variational

implicit surfaces. A function f is represented through a linear combination of radial basis

functions. The weights of the linear combination are computed by solving a scattered

data interpolation problem. If the radial basis functions are chosen appropriately, then

the computed weights also minimise an energy functional that penalises high curvature.

This results in everywhere smooth surfaces. Variational implicit surfaces can easily be

created from polygonal meshes and deformation is also easy.

Variational implicit surfaces as introduced by Turk and O’Brien are not suitable for

large data sets (N & 2000) since the fitting procedure involves a non-sparse system matrix

and evaluation involves computing radial basis functions in the order of N . Carr et al. [14]

improve upon Turk and O’Brien’s variational implicit surfaces by using a reduced number

of radial basis functions for fitting and using fast multipole methods for faster evaluation.

They also improve upon fitting accuracy by using dynamic projection to generate valid

off-surface points used in the fitting procedure.

In the domain of implicit polynomials, Taubin [66] reduced the non-linear least-squares

problem of fitting implicit algebraic curves and surfaces to data to a generalised eigen-

vector problem. Blane et al. [8][7] introduced the 3L fitting algorithm that converted this

non-linear problem to a linear least-squares problem. Kang et al. [35] reconstruct 3D sur-

faces from occluding contours of algebraic surfaces using a linear dual-surface approach

that makes use of the duality between 3D points and tangent planes.

Applications The most popular applications of algebraic surfaces are in projective

registration and invariant-based object recognition. They have already been presented in

Section 1.1.

For spatial 3D-3D registration, Tarel et al. [32] fit implicit algebraic surfaces to 3D

surface data using the 3L fitting method. This allows fast extraction of geometric surface

information from the polynomial coefficients. Robustness of polynomial coefficients to

occlusion and their consistency under rigid body motions that comes with 3L fitting, is

important for the registration problem. The use of implicit algebraic surfaces allows them

to control shape resolution by varying the degree of the polynomials. It also allows them

to represent and register both open and closed shapes.





Chapter 4
Implicit Algebraic Curves and Surfaces

An implicit algebraic surface consists of the set of points where a polynomial f takes on

the value 0. Specifically, it is the set of zeros Z(f) of a smooth1 polynomial function

f : R
3 → R of three variables:

Z(f) = {(x, y, z) : f(x, y, z) = 0}·

Similarly, an implicit algebraic 2D curve is the zero-set

Z(f) = {(x, y) : f(x, y) = 0}

of a smooth polynomial function f : R
2 → R of two variables and an implicit algebraic

3D curve is the intersection of two surfaces f1 and f2, i.e. the zero-set

Z(f) = {(x, y, z) : f(x, y, z) = 0}

of a two dimensional vector function f : R
3 → R

2 of three variables

f(x, y, z) =

[
f1(x, y, z)

f2(x, y, z)

]

·

More generally, curves and surfaces can be represented by functions belonging to a family

parametrised by a finite number r of parameters. Let φ : R
r+n → R

k be a smooth function

and consider the maps f : R
n → R

k which can be written as

f(x) ≡ φ(u,x)

for certain u = (u1, · · · , ur)
T . f can be written as f = φu. The u1, · · · , ur are called the

parameters while the x1, · · · , xn are called the variables. The family of all such maps can

be written as

F = {f : ∃u f = φu} (4.1)

where φ is the parametrisation of the family F. It can be seen that for f ∈ F, Z(f) is a

2D curve when n = 2 and k = 1, a surface when n = 3 and k = 1 and a 3D curve when

n = 3 and k = 2.
1having continuous first- and second-order derivatives at every point
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In the following, we explain how algebraic entities represented by implicit polynomials

can be transformed by manipulating the polynomial coefficients. Then we explain how

intrinsic geometry of Z(f) can be extracted from the coefficients and how this leads to

a simple method of implicit spatial registration that is a correspondence-free alternative

to explicit registration methods such as ICP [6]. We end this chapter by presenting tech-

niques for fitting implicit polynomials to data where we describe the 3L fitting algorithm.

4.1 Polynomial Transformation

The zero-set Z(f) of a polynomial f can be transformed by manipulating the polynomial

coefficients. There are two ways of manipulating polynomial coefficients to affect zero-set

transformations, the matrix-based approach and the tensor-based approach. In the rest

of this section, polynomials will be represented by lowercase letters of the Latin alphabet

such as f whereas forms will be represented by Greek symbols such as φ.

4.1.1 Matrix-based Approach

If we define Fα = α!aα where α! is a multi-factorial, then without loss of generality, a

polynomial of degree, say 3, f = φ0 + φ1 + φ2 + φ3 can be rewritten as

f(x) =
F00

0!0!
︸︷︷︸

φ0

+
F10

1!0!
x1 +

F01

0!1!
x2

︸ ︷︷ ︸

φ1(x)

+
F20

2!0!
x2

1 +
F11

1!1!
x1x2 +

F02

0!2!
x2

2
︸ ︷︷ ︸

φ2(x)

+
F30

3!0!
x3

1 +
F21

2!1!
x2

1x2 +
F12

1!2!
x1x

2
2 +

F03

0!3!
x3

2
︸ ︷︷ ︸

φ3(x)

= F00
︸︷︷︸

φ0

+ F10x1 + F01x2
︸ ︷︷ ︸

φ1(x)

+
1

2
F20x

2
1 + F11x1x2 +

1

2
F02x

2
2

︸ ︷︷ ︸

φ2(x)

+
1

6
F30x

3
1 +

1

2
F21x

2
1x2 +

1

2
F12x1x

2
2 +

1

6
F03x

3
2

︸ ︷︷ ︸

φ3(x)

=
3∑

r=0

φr(x)·

More generally, an nD polynomial in variables x = (x1, . . . , xn) can be written as

f(x) =
∑

α

1

α!
Fαx

α
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where the vector of non-negative integers α = (α1, . . . , αn) is a multi-index of size |α| =

α1 + . . . + αn, α! = α1! . . . αn! is a multi-index factorial (or multi-factorial), Fα is a

coefficient of degree |α|, and xα = xα1
1 . . . xαn

n is a term of degree |α|.
A 3D quadratic form can then be written as

φ(x1, x2, x3) = a200x
2
1 + a110x1x2 + a101x1x3 + a020x

2
2 + a011x2x3 + a002x

2
3

=
Φ(2,0,0)

2
x2

1 + Φ(1,1,0)x1x2 + Φ(1,0,1)x1x3 +
Φ(0,2,0)

2
x2

2 + Φ(0,1,1)x2x3 +
Φ(0,0,2)

2
x2

3

=
1

2

(
x1 x2 x3

)





Φ(2,0,0) Φ(1,1,0) Φ(1,0,1)

Φ(1,1,0) Φ(0,2,0) Φ(0,1,1)

Φ(1,0,1) Φ(0,1,1) Φ(0,0,2)









x1

x2

x3



 ·

Taubin and Cooper [66] represent the 3 × 3 symmetric matrix as Φ[1,1]. The purpose of

constructing Φ[1,1] is that under a linear transformation x′ = Ax, this matrix of coeffi-

cients transforms as

Φ′
[1,1] = A−T Φ[1,1]A

−1· (4.2)

Hence, the coefficients of the transformed quadratic form can be computed using (4.2).

Two questions that arise here concern the construction of the coefficient matrix and the

transformation of forms of degree r > 2.

4.1.1.1 Construction of Coefficient Matrices

For a form of degree j, let the coefficient vector Φ[j] be defined as

Φα√
α!

: |α| = j (4.3)

where Φα are the symbols instead of the values representing the coefficients. Let hj be

the number of monomials in a form of degree j. Then for forms of degree j + k = r the

hj × hk coefficient matrix Φ[j,k] can be constructed from the vectors of lower degree forms

Φ[j] and Φ[k] using

Φ[j,k] = Φ[j] ? ΦT
[k] (4.4)

where ? represents the classic matrix multiplication with the difference that the individual

element-wise multiplications are performed according to the rule ΦαΦβ = Φα+β. Such a

symbolic multiplication gives the set of coefficients

{ Φα+β√
α!β!

: |α| = j, |β| = k}·

As an example, to form Φ[1,1] as above, first the vector Φ[1] is formed:

Φ[1] =







Φ(1,0,0)√
1!0!0!

Φ(0,1,0)√
0!1!0!

Φ(0,0,1)√
0!0!1!







=





Φ(1,0,0)

Φ(0,1,0)

Φ(0,0,1)



 ·
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Then Φ[1,1] is formed by Φ[1] ? ΦT
[1] with the element-wise multiplications performed as

ΦαΦβ = Φα+β:

Φ[1,1] = Φ[1] ? ΦT
[1]

=





Φ(1,0,0)

Φ(0,1,0)

Φ(0,0,1)




(

Φ(1,0,0) Φ(0,1,0) Φ(0,0,1)

)

=





Φ(1,0,0)+(1,0,0) Φ(1,0,0)+(0,1,0) Φ(1,0,0)+(0,0,1)

Φ(0,1,0)+(1,0,0) Φ(0,1,0)+(0,1,0) Φ(0,1,0)+(0,0,1)

Φ(0,0,1)+(1,0,0) Φ(0,0,1)+(0,1,0) Φ(0,0,1)+(0,0,1)





=





Φ(2,0,0) Φ(1,1,0) Φ(1,0,1)

Φ(1,1,0) Φ(0,2,0) Φ(0,1,1)

Φ(1,0,1) Φ(0,1,1) Φ(0,0,2)



 ·

4.1.1.2 Transformation of Forms

Using the form representation matrix Φ[j,k], Taubin and Cooper [66] show that under a

non-singular coordinate transformation A, the transformed coefficient matrix is given by

Φ′
[j,k] = A−T

[j] Φ[j,k]A
−1
[k] (4.5)

where A[j] is a non-singular hj × hj matrix and A[k] is a non-singular hk × hk matrix.

4.1.1.3 Transformation of Polynomials

By introducing homogeneous coordinates, an algebraic curve or surface described in Eu-

clidean space by a polynomial in n variables can be described in projective space by a

corresponding homogeneous polynomial in n + 1 variables. To convert a ternary (i.e. 3D)

polynomial of degree d

fd(x1, x2, x3) =
∑

0≤i,j,k;i+j+k≤d

aijkx
i
1x

j
2x

k
3

into its homogeneous representation, a new component x4 = 1 is added to every 3D point

(x1, x2, x3) to get the same polynomial written in homogeneous representation

fd(x1, x2, x3, x4) =
∑

0≤i,j,k,l;i+j+k+l=d

aijklx
i
1x

j
2x

k
3x

l
4· (4.6)

A homogeneous polynomial corresponding to a polynomial of degree d in n variables is a

form of degree d in n + 1 variables and hence the procedure mentioned in the last section

can be used to transform the homogeneous polynomial. Similar to the coefficient represen-

tation matrix Φ[j,k] for a form, we can make the coefficient representation matrix F[j,k] for

a homogeneous polynomial. As an example, for a 2D polynomial of degree 4, the homoge-

neous form is a 3D polynomial of degree 4 and we can setup the coefficient representation
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matrix as

F[2,2] = F[2] ? F T
[2]

=













1
2
F(4,0,0)

1√
2
F(3,1,0)

1√
2
F(3,0,1)

1
2
F(2,2,0)

1√
2
F(2,1,1)

1
2
F(2,0,2)

1√
2
F(3,1,0) F(2,2,0) F(2,1,1)

1√
2
F(1,3,0) F(1,2,1)

1√
2
F(1,1,2)

1√
2
F(3,0,1) F(2,1,1) F(2,0,2)

1√
2
F(1,2,1) F(1,1,2)

1√
2
F(1,0,3)

1
2
F(2,2,0)

1√
2
F(1,3,0)

1√
2
F(1,2,1)

1
2
F(0,4,0)

1√
2
F(0,3,1)

1
2
F(0,2,2)

1√
2
F(2,1,1) F(1,2,1) F(1,1,2)

1√
2
F(0,3,1) F(0,2,2)

1√
2
F(0,1,3)

1
2
F(2,0,2)

1√
2
F(1,1,2)

1√
2
F(1,0,3)

1
2
F(0,2,2)

1√
2
F(0,1,3)

1
2
F(0,0,4)













·

4.1.2 Tensor-based Approach

Tarel et al. [32] show that for a homogeneous polynomial of degree d (4.6) can be written

in a unique way as

fd(x1, x2, x3, x4) =
4∑

i1=1

4∑

i2=1

· · ·
4∑

id=1

bi1i2...idxi1xi2 . . . xid (4.7)

where

bi1i2...id = aijkl
i!j!k!l!

n!
(4.8)

and the multi-index ijkl is derived from the multi-index i1i2 . . . id as follows:

i = number of times 1 appears in i1i2 . . . id,

j = number of times 2 appears in i1i2 . . . id,

k = number of times 3 appears in i1i2 . . . id,

l = number of times 4 appears in i1i2 . . . id.

Note that this construction is for a 3D polynomial whose homogeneous representation

requires the 4 indices ijkl. In general, an nD polynomial would require n + 1 indices

ij . . . . The length of the other multi-index i1i2 . . . id is independent of the number of

polynomial variables. It depends only on (and is equal to) the degree d. However, the

value of each index ik for k = 1 . . . d ranges from 0 till the number of variables. The

different bi1i2...id form the rank d covariant tensor Bd

Bd = (bi1i2...id)1≤i1i2...id≤4 (4.9)

that is the tensor representation the polynomial fd. Note that Bd is symmetric and

therefore highly redundant. The mapping from ijkl to i1i2 . . . id is one-to-many. Rank d

tensors are implemented as d-dimensional arrays. Since the homogeneous representation

of fd is a polynomial in 4 variables, Bd is a d-dimensional array with 4d entries.

To consider transformation of the tensor, let M = (mj
i ) be a 4× 4 matrix representing

a linear transformation of the world coordinate system2 where mj
i represents the entry at

2Transforming the world coordinate system by M is equivalent to transforming objects in the world coordinate

system by M−1.
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row i and column j. Upon such a transformation, the transformed tensor entries in the

new basis are given by

b′j1j2...jd = |J−1|
4∑

i1=1

4∑

i2=1

· · ·
4∑

id=1

bi1i2...idmj1
i1

mj2
i2

. . .mjd

id
(4.10)

where J is the Jacobian matrix of M . For orthogonal (and hence Euclidean) transforma-

tions |J | = det(M) = 1. So to transform a 3D polynomial by a linear transformation M

the following steps should be followed:

1. Transform the polynomial to its homogeneous form by adding homogenising variable

x4.

2. Construct a tensor from the homogeneous form using (4.8).

3. Transform the tensor elements by M−1 using (4.10).

4. Convert the transformed tensor back to homogeneous polynomial form by making

use of (4.8). Since the mapping from i1i2 . . . id to ijkl is many-to-one, any one of

the multi-indices i1i2 . . . id that map to ijkl can be used.

5. Convert the homogeneous polynomial to its normal representation by substituting

x4 = 1.

The transformation shown in Figure 4.2 was achieved using this approach.

4.2 Intrinsic Geometry of Implicit Algebraic Curves and Sur-

faces

4.2.1 Computation of Euclidean Center

Taubin and Cooper [66] show that the Euclidean center c of an implicit polynomial fd = 0

of degree d can be computed as

c = −F †
[d−1,1]F[d−1] (4.11)

where F[d−1,1] is a symmetric matrix constructed from the coefficients of the highest degree

form, F[d−1] is a vector constructed from the coefficients of the form of the second highest

degree and † implies taking the pseudoinverse which is given as

F †
[d−1,1] = [F[1,d−1]F[d−1,1]]

−1F[1,d−1]
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provided that F[1,d−1]F[d−1,1] is non-singular. For a 2D polynomial of degree 4, (4.11)

expands to

[
c1

c2

]

= −








1√
6
F(4,0)

1√
6
F(3,1)

1√
2
F(3,1)

1√
2
F(2,2)

1√
2
F(2,2)

1√
2
F(1,3)

1√
6
F(1,3)

1√
6
F(0,4)








†

[
F(1,0)

F(0,1)

]

= −








4!0!√
6
a40

3!1!√
6
a31

3!1!√
2
a31

2!2!√
2
a22

2!2!√
2
a22

1!3!√
2
a13

1!3!√
6
a13

0!4!√
6
a04








†

[
1!0!a10

0!1!a01

]

·

Moreover, the center is a covariant. That is, if the coordinate axes transform by x′ =

Ax + b then the center also transforms by c′ = Ac + b.

Lemma 4.2.1. Let f(x) be a polynomial of degree d, x′ = Ax+ b a Euclidean coordinate

transformation, f ′(x′) = f(AT (x′ − b)), c = −F †
[d−1,1]F[d−1] and c′ = −F ′

[d−1,1] † F ′
[d−1].

Then c′ = Ac + b.

4.2.2 Computation of Euclidean Orientation

Continuing from the approach for Euclidean center computation, Taubin and Cooper [66]

show that for an nD polynomial fd of degree d, the n eigenvectors of the symmetric matrix

F T
[d−1,1]F[d−1,1] (4.12)

form an orthogonal coordinate system that defines the intrinsic orientation of the implicit

polynomial fd = 0 (i.e. Z(fd)). Let us denote by Vf the n× n orthogonal matrix formed

by placing the n eigenvectors column-wise. The geometric interpretation of the orthogonal

matrix Vf is that it transforms the standard Cartesian axes to the intrinsic axes of the

polynomial fd. Alternatively, V−1
f transforms the polynomial’s intrinsic axes into align-

ment with the standard Cartesian axes. For a 2D polynomial of degree 4, the symmetric

matrix whose 2 eigenvectors define the implicit polynomial’s orientation is given by

F T
[d−1,1]F[d−1,1] = F T

[3,1]F[3,1]

=

[
F 2

(4,0)

6
+

F 2
(3,1)

2
+

F 2
(2,2)

2
+

F 2
(1,3)

6
A

A
F 2

(3,1)

6
+

F 2
(2,2)

2
+

F 2
(1,3)

2
+

F 2
(0,4)

6

]

where

A =
F(4,0)F(3,1)

6
+

F(3,1)F(2,2)

2
+

F(2,2)F(1,3)

2
+

F(1,3)F(0,4)

6

A tensor-based extension of this approach can be found in [32]. The particular advantage

of that approach is that it leads to a matrix with entries that are linear in the coefficients

of the highest degree form of fd. This linearity leads to more robust orientation estimation.

Figure 4.1 shows the intrinsic reference frames extracted from coefficients of a 4th-degree

algebraic curve fitted to 2D data undergoing linear transformations consisting of rotation
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followed by translation. Figure 4.2 shows the intrinsic reference frame extracted from

coefficients of a 4th-degree algebraic surface representing a paper puncher and for the

same puncher rotated by 45◦ around the x-axis.

Figure 4.1: Left to right: Intrinsic reference frames (center+orientation) extracted from coefficients

of 4th-degree implicit polynomials fitted to 2D data. First image shows the algebraic curve fitted to data

in the original position and its intrinsic reference frame. The rest show the same information for data

rotated by 10, 20, 30 and 45 degrees and then translated by 10, 10. It can be observed that the computed

intrinsic reference frames are covariant w.r.t. the transformations.

Figure 4.2: Intrinsic reference frames extracted from coefficients of a 4th-degree algebraic surface rep-

resenting a paper puncher and for the same puncher rotated by 45◦ around the x-axis.

4.3 Spatial Registration of Implicit Polynomials

The intrinsic geometry of algebraic entities presented in the last section provides an easy

correspondence-free method of spatial registration.

4.3.1 Translation Estimation

Let fd = 0 be an implicit polynomial of degree d and gd be a translated version of fd, i.e.

gd(x) = fd(x + t)

where t is the translation vector. Using (4.11) the centers of both polynomials are given

by

cf = −F †
[d−1,1]F[d−1],

cg = −G†
[d−1,1]G[d−1]·
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Now, translation t is given as the difference between the centers:

t = cg − cf

= −G†
[d−1,1]G[d−1] + F †

[d−1,1]F[d−1]·

Since translation leaves the highest degree form unchanged [66], G[d−1,1] = F[d−1,1] as both

matrices are constructed from the respective highest degree forms only. This implies that

t = G†
[d−1,1](F[d−1] − G[d−1])· (4.13)

4.3.2 Rotation Estimation

Let fd = 0 be an implicit nD polynomial of degree d and gd be a rotated version of fd, i.e.

gd(x) = fd(Rx)

where R is the n × n rotation matrix. The intrinsic orientations Vf and Vg can be

computed as explained in Section 4.2.2. Since the rotation V−1
f aligns the polynomial fd

with the world coordinate system and Vg aligns the world coordinate system with the

intrinsic axes of polynomial gd, the rotation R that transforms the implicit polynomial fd

to gd is given as

R = VgV
−1
f = VgV

T
f · (4.14)

It should be noticed, however, that any intrinsic orientation matrix such as Vf does not

provide a unique transformation between the intrinsic axes and the standard Cartesian

frame. For a 2D polynomial there are 4 pairs of intrinsic eigenvectors (corresponding to

the symmetry of an ellipsoid) only one of which is the correct transformation. For a 3D

polynomial, there are 8 such groups of 3 eigenvectors (corresponding to the symmetry of

a hyperboloid). A method for disambiguating the rotation estimates is presented in the

next section.

4.3.3 Rotation + Translation Estimation

When the transformation between fd and gd is Euclidean (i.e. rotation + translation),

a method for disambiguation of the rotation estimate can be found in [32] where the

correct rotation is found by combining the different rotation estimates with the translation

estimates and picking the transformation (R, t) that minimises the distance between the

coefficient vectors of fd(Rx+t) and gd. It can be seen that the transformation (R, t) leads

to spatial registration of Z(fd) with Z(gd). This implicit registration is an alternative to

explicit correspondence-based registration such as the ICP method [6].

4.4 Implicit Algebraic Curve and Surface Fitting

Given a finite set of n-dimensional data points D = {p1, · · · , pq}, fitting an implicit curve

or surface Z(f) to the data set D means computing a minimiser f̂ ∈ F of the mean square

distance
1

q

q
∑

i=1

dist(pi, Z(f))2 (4.15)
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from the data points to the curve or surface Z(f). The polynomial f is also called the

interpolating polynomial. Such a minimisation is complicated by the fact that there is no

closed form expression for dist(x, Z(f)), the distance from a point x ∈ R
n to a generic

implicit curve or surface Z(f) [66]. Therefore iterative methods are required which make

the minimisation of equation (4.15) computationally impractical.

Taubin [65] derives an approximation of the point to implicit entity distance as follows.

A closed form expression for dist(x, Z(f)) does exist when f is linear, i.e. a first degree

polynomial. In that case, the Jacobian matrix Df(x) is constant and the following identity

is satisfied:

f(y) ≡ f(x) + Df(x) · (y − x) (4.16)

for a point y ∈ Z(f) and x. The unique point ŷ that minimises the distance ‖y − x‖ to

x, constrained by f(y) = 0, is given by

ŷ = x − [Df(x)]†f(x) (4.17)

where [Df(x)]† = Df(x)T (Df(x)Df(x)T )−1 is the pseudoinverse of Df(x). So the

squared distance from x to Z(f) is given by

dist(x, Z(f))2 = f(x)T [Df(x)Df(x)T ]−1f(x)· (4.18)

For the general case when f is non-linear, the distance between x and Z(f) can be

approximated by the distance between x and a linear model f̄ of f at x such that

f(y) − f̄(y) = O(‖y − x‖2)·

f̄ is taken to be the truncated Taylor series expansion of f :

f̄(y) = f(x) + Df(x)(y − x)·

Since f̄(x) = f(x) and Df̄(x) = Df(x), an approximate squared distance is given by

dist(x, Z(f))2 ≈ f(x)T [Df(x)Df(x)T ]−1f(x)· (4.19)

We will be primarily interested in planar curves and surfaces in which case Df(x) =

∇f(x)T and equation (4.19) reduces to

dist(x, Z(f))2 ≈ f(x)2

‖∇f(x)‖2
· (4.20)

Taubin [65] has shown that the approximate distance function is independent of the

representation of Z(f), is invariant to rigid body transformations and is proportional to

scale transformations. Using equation (4.20) we can write the approximate mean square

distance from the data set D to the set of zeros of f = φu ∈ F as

∆2
D(u) =

1

q

q
∑

i=1

f(pi)
2

‖∇f(pi)‖2
· (4.21)
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4.4.1 Generalised Eigenvector Fitting

Minimisation of equation (4.21) is a non-linear least squares problem and can be solved

by iterative techniques such as the Levenberg-Marquardt algorithm. However, such a

minimisation is local. To obtain a global initial estimate that can be used in subse-

quent local minimisation, Taubin [65] replaces the approximate mean square distance,

equation (4.21), by the following approximation that reduces the problem of finding the

minimising parameters to a generalised eigenproblem. For certain families of implicit

curves and surfaces, ‖∇f(x)‖ is constant on Z(f). Hence equation (4.21) can be written

as

∆2
D(u) =

1

q

q
∑

i=1

f(pi)
2

‖∇f(pi)‖2
≈

1
q

∑q
i=1 f(pi)

2

1
q

∑q
i=1‖∇f(pi)‖2

·

The right hand side can be written as

1
q

∑q
i=1 f(pi)

2

1
q

∑q
i=1‖∇f(pi)‖2

=
FMF T

FNF T
(4.22)

where M = 1
q

∑q
i=1[X(pi)X(pi)

T ], N = 1
q

∑q
i=1[DX(pi)DX(pi)

T ], F = (F1, · · · , Fh)

is a row vector of coefficients, i.e. the required minimising parameters, and X =

(X1, · · · , Xh)
T : R

n → R
h is a fixed map such that f(x) = F1X1(x) + · · · + FhXh(x) =

FX(x). M and N are non-negative definite, symmetric matrices that are functions of only

the data points. Equation (4.22) is minimised by the eigenvector corresponding to the

minimum eigenvalue of the pencil F (M − λN) = 0 and hence the minimisation problem

has been reduced to a generalised eigenvalue problem. Such fitting is termed generalised

eigenvector fitting by Taubin [65] where it is proposed as a fitting method even for the

general case when ‖∇f(x)‖ is not constant on Z(f).

4.4.2 The 3L Fitting Algorithm

Blane et al. [7][8] showed that generalised eigenvector fitting produces zero-sets that are

not faithful to the data. Instead, they introduced a completely different approach for

fitting implicit polynomials to data. Their 3L fitting algorithm converts the non-linear

minimisation problem of equation (4.15) to a linear least-squares explicit polynomial fit-

ting problem. The basic idea is to generate additional points at distance levels +c and

-c from the data set in the normal direction. This gives 3 levels of constraints on the

interpolating polynomial; the 0 level consisting of the original data points, the +c level

consisting of interior points and the -c level consisting of the exterior points. When the

number of data points (original plus generated) are greater than the number of polynomial

coefficients to solve for, the constraint equations can be written as an over-constrained

linear system Ax = b. For example, for a 2D quadratic polynomial 3L fitting solves the
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f(x,y)=0 f(x,y)=0
f(x,y)=+c

f(x,y)=-c
f(x,y)=+c
f(x,y)=0

0 +c 0 +c 0 -c

Figure 4.3: The three levels used in 3L fitting.

following over-constrained linear system:



















1 x1 y1 x2
1 x1y1 y2

1
...

1 xi yi x2
i xiyi y2

i

1 xi+1 yi+1 x2
i+1 xi+1yi+1 y2

i+1
...

1 xj yj x2
j xjyj y2

j

1 xj+1 yj+1 x2
j+1 xj+1yj+1 y2

j+1
...

1 xn yn x2
n xnyn y2

n




















︸ ︷︷ ︸

A












a00

a10

a01

a20

a11

a02












︸ ︷︷ ︸

x

=




















+c
...

+c

0
...

0

−c
...

−c




















︸ ︷︷ ︸

b

· (4.23)

Extension to higher dimensional, higher degree polynomials is straight-forward as can be

seen from the following system for a 3D polynomial of degree d:



















1 x1 y1 z1 x2
1 . . . y1z

d−1
1 zd

1
...

1 xi yi zi x2
i . . . yiz

d−1
i zd

i

1 xi+1 yi+1 zi+1 x2
i+1 . . . yi+1z

d−1
i+1 zd

i+1
...

1 xj yj zj x2
j . . . yjz

d−1
j zd

j

1 xj+1 yj+1 zj+1 x2
j+1 . . . yj+1z

d−1
j+1 zd

j+1
...

1 xn yn zn x2
n . . . ynz

d−1
n zd

n




















︸ ︷︷ ︸

A

















a000

a100

a010

a001

a200
...

a01(d−1)

a00d

















︸ ︷︷ ︸

x

=




















+c
...

+c

0
...

0

−c
...

−c




















︸ ︷︷ ︸

b

· (4.24)

The polynomial that represents the 2D algebraic curve for system (4.23) and the 3D

algebraic surface for system (4.24) is then given by the coefficient vector

x = A†b (4.25)

where A† is the pseudoinverse (ATA)−1AT of matrix A. For increased numerical stabil-

ity, the Householder algorithm [2] can also be used for obtaining the coefficient vector x.
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Figure 4.4 shows implicit polynomials of degree 4 and 8 fitted to a puncher model. For the

fittings shown every 4th point in the original data set was selected, and additional points

were generated in the positive and negative normal directions at distances 0.5, 1.0, 1.5, 2.0.

The better fitting due to additional level-sets is not in agreement with [8] who state that

conceptually and empirically additional level-sets will not improve fitting results. We also

found that fitting error increased when every point in the original data set was used. This

was because at regions with high concentration of points, self-intersecion of normals can

occur. Also, using level-sets in addition to the 3 proposed by 3L fitting improved the qual-

ity of the fits and more accurately controlled the behaviour of the resulting polynomials

far away from the data set. This is in agreement with the observations and suggestions

made in [14]. For a detailed treatment of 3L fitting, its comparison with other fitting

techniques and justification of the fact that ATA is non-singular, we refer the reader

to [8].

(a) 4th degree fit (b) 8th degree fit

Figure 4.4: Profile views of a puncher fitted with polynomials of degree 4 and 8 using 3L fitting.





Chapter 5
Occluding Contours and Pose Estimation

In Section 2.3 we described how to obtain tangent cones of algebraic surfaces using re-

sultants. In this chapter we describe how to obtain occluding contour equations from

equations of algebraic surfaces and the camera projection matrix using the Dixon re-

sultant. We also describe how such occluding contours maybe used for pose estimation

of algebraic surfaces. We end by presenting a hybrid implicit-explicit approach to pose

estimation.

5.1 Occluding Contours

Figure 5.1 illustrates the formation of occluding contours from algebraic surfaces viewed

through a perspective projection. As explained earlier, the red contour in the image is

occluding contour

contour generator

f

I

P(x,y,z)=0

P(x,y,z)=0

Q(x,y,z)=0

∇P(x,y,z)

Figure 5.1: A sphere boundary represented as an implicit algebraic surface P (x, y, z) = 0, a contour

generator and the corresponding occluding contour with respect to the focal point f of the camera.
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formed by the projection of the blue points on the sphere that lie on tangential rays

emanating from the focal point f . The 3D points constitute the contour generator and

their projections constitute the occluding contour. All points x on the contour generator

satisfy

P (x) = 0,

Q(x) = (x − f).∇P (x) = 0·

Q(x) = 0 is called the tangency condition. Let focal point f be at (0, 0,−400) and the

projection matrix M encoding the image formation process be

M =





100 0 80 32000

0 −100 60 24000

0 0 1 400



 ·

M represents projection onto a 120×160 image plane parallel to the xy-plane and placed

at z = −300 with focal point (0, 0,−400). Projection equations can be written as

s =
100x + 80z + 32000

z + 400
,

t =
−100y + 60z + 24000

z + 400

where the first equation defines projection onto the horizontal axis of the image plane and

the second equation defines the vertical projection. The top-left corner of the image is

the image origin (0, 0). We can write the projection equations as implicit polynomials

H(x, s) = 100x − s(z + 400) + 80z + 32000 = 0,

V (x, t) = 100y + t(z + 400) − 60z − 24000 = 0·

Since the occluding contour is the projection of the contour generator, it satisfies the

following polynomial system:

P (x) = 0

Q(x) = 0

H(x, s) = 0

V (x, t) = 0 (5.1)

5.1.1 Occluding Contour of a Sphere

For a sphere of radius 70 centered at (0, 0, 0) and viewed via projection matrix M, the

system (5.1) becomes

x2 + y2 + z2 − 702 = 0

2x2 + 2y2 + 2z2 + 800z = 0

100x − s(z + 400) + 80z + 32000 = 0

100y + t(z + 400) − 60z − 24000 = 0
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To obtain the equation of the occluding contour in terms of the image coordinate system

(s, t), we need to eliminate the variables x, y, z from the system. Although the Dixon

resultant can be used at this stage to eliminate x, y, z simultaneously, one can observe that

for our simple projection matrix M, H(x, s) and V (x, t) are linear in x and y respectively.

This allows us to solve them for x and y and substitute the resulting expressions in the

first two equations of the polynomial system to get two equations in z, s, t. Now, the

Dixon resultant or any other bivariate resultant can be used to eliminate z from the two

polynomials. Such elimination by substitution significantly reduces the size of resultant

matrices.

For the purposes of illustrating elimination through Gröbner bases, we next compute

the same occluding contour as above but this time the sphere is parametrised by the 3

translation parameters (v1, v2, v3). We use the Groebner package in MAPLE.

with(Groebner):

fp:=[0,0,-400]:

P:=(x+v1)^2+(y+v2)^2+(z+v3)^2-70^2:

Q:=(x-fp[1])*diff(P,x)+(y-fp[2])*diff(P,y)+(z-fp[3])*diff(P,z):

H:=100*x-s*(z+400)+80*z+32000:

V:=100*y+t*(z+400)-60*z-24000:

idl:=[P,Q,H,V]:

tt:=time(): gb:=Basis(idl,plex(x,y,z,s,t,v1,v2,v3)): time()-tt;

OC:=op(1,gb):

OC:=op(-1,factor(OC));

which gives the occluding contour as

OC(s, t) =

(s2 − 160s + 10000 + t2 − 120t)v2
3

+ (−800t2 − 800s2 − 200sv1 + 200tv2 + 16000v1 + 128000s − 8000000 − 12000v2 + 96000t)v3

+ s2v2
2 − 24816000s + 2stv1v2 + t2v2

1 + 4800000v2 + 155100t2 − 120sv1v2 − 120tv2
1

− 160sv2
2 + 9600v1v2 + 155100s2 − 160tv1v2 + 13600v2

1 − 80000tv2 + 80000sv1

− 6400000v1 + 16400v2
2 − 18612000t + 1502000000 (5.2)

Figure 5.2: Some outlines of a sphere moving downwards, from left to right and towards the camera.
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5.1.2 Occluding Contour of a Quartic

While the occluding contour of a quadratic surface is a plane curve that is still quadratic

in s, t, the occluding contour of a quartic surface is of degree 12 in s, t. This follows from

lemma (5.1.1) that we reproduce from [27].

Lemma 5.1.1. For a generic surface of degree d viewed from focal point f , the tangent

cone, and hence its outline, has degree d(d − 1).

Proof. In projective space, consider a generic focal point f = (f0, f1, f2, f3). The surface

P (x, y, z, w) is of degree d and the tangency condition requires that planes tangent to the

surface at contour generator points must pass through the focal point. This point-plane

duality can be expressed as

f0
∂P

∂w
+ f1

∂P

∂x
+ f2

∂P

∂y
+ f3

∂P

∂z
= 0

which is of degree d− 1. Since the contour generator is the complete intersection of these

two hypersurfaces, it is of degree d(d − 1) in the generic case.

Herein lies a practical limitation of studying the projective geometry of algebraic sur-

faces. Contour generators and hence occluding contours very quickly become high degree

polynomials that are hard to handle. Table 5.1.2 illustrates how the degree of the oc-

cluding contour in the image coordinates (s, t) varies as a function of the degree of the

algebraic surface in 3D coordinates (x, y, z). We therefore limit ourselves to studying only

Degree of Surface 2 4 6 8

Degree of Occluding Contour 2 12 30 56

Table 5.1: Degree of occluding contour in (s, t) as a function of the degree of the algebraic surface in

(x, y, z).

4th order algebraic surfaces. They can represent many useful 2D shapes and 3D real

world objects [8] as can be seen in Figure 4.4.

We work in the same environment as for the sphere in the last section but replace the

sphere by the quartic surface

P (x) = x4 + y4 + z4 − 200xyz = 0·

As before we construct the polynomial system P, Q, H, V and eliminate x, y, z to obtain

the occluding contour. Attempting such an elimination using Gröbner bases exhibits the

severe limitation of Gröbner bases. On a 3.06 GHz n-Series Dual Intel XEON with 2 GB

RAM, the method failed to produce the occluding contour for the quartic parametrised by

only a single translation parameter v1 even after 1 hour. In comparison, the Dixon resul-

tant based approach described next computed the occluding contour in less than 4 seconds.

Figure 5.4 shows the occluding contours obtained with v1 set to −200,−100, 0, 100, 200

which corresponds to a horizontal movement of the quartic surface from left to right in

3D.
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Figure 5.3: Quartic surface defined by x4 + y4 + z4 − 200xyz = 0.

Figure 5.4: Some outlines of a quartic surface moving from left to right.

5.1.2.1 Dixon Resultant and Spurious Factors

We will go through the actual MAPLE code to explain how we use the Dixon resultant

and remove spurious factors to reduce computation time. To actually compute the Dixon

resultant we use the Dixon/Bézout resultant package for MAPLE developed by Arthur D.

Chtcherba [3]. To begin, we load the LinearAlgebra package for basic linear algebra

operations that come with MAPLE. Then we read in the Dixon/Bézout resultant package

stored on the local disk and start a timer to see how long the computation runs.

with(LinearAlgebra):

read("~/myCode/Dixon.mpl"):

tt1:=time():

We then define the quartic surface P and the tangency condition Q.

P:=x^4+y^4+z^4-200*x*y*z:

P:=subs([x=x+v1],P):

fp:=[0,0,-400]:

Q:=expand((x-fp[1])*(diff(P, x))+(y-fp[2])*(diff(P, y))+(z-fp[3])*(diff(P, z))):

Since the projection matrix M leads to linear projection equations in x and y, we can

eliminate them (i.e. x and y) by substitution. Therefore we substitute the expressions for

x and y in P and Q.

P:=primpart(subs([x=(s*(z+400)-80*z-32000)/100, y=(60*z+24000-t*(z+400))/100],P)):

Q:=primpart(subs([x=(s*(z+400)-80*z-32000)/100, y=(60*z+24000-t*(z+400))/100],Q)):
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Now we need to eliminate z only. We first compute the Dixon matrix of P and Q w.r.t. z.

mtx:=Dixon:-DixonMatrix([P,Q],[z],‘rowH’,‘colH’):

The determinant of this matrix contains the Dixon resultant alongwith spurious factors.

We make use of the fact that the true Dixon resultant is irreducible and we use the

following rule from linear algebra:

det








a1row1

a2row2
...

anrown








= a1a2 . . . andet








row1

row2
...

rown







·

This tells us that any row factors a1, a2 . . . , an are spurious factors because the Dixon

resultant is irreducible. They can be removed from the Dixon matrix before computing

the determinant. If they are not removed, they will end up as spurious factors in a

comparatively bigger determinant expression. In our experiments, factoring out such

factors from very large determinant expressions was often not possible in MAPLE. Early

factoring out of spurious factors leads us closer to the exact resultant and significantly

reduces the time for determinant computation. Therefore, as the next step, we compute

the GCD of each row and divide it out to obtain a factored-out Dixon matrix. The process

can be repeated for the columns also.

FMtx:=Matrix(Dimensions(mtx)):

for i from 1 to RowDimension(mtx) do

row_gcd:=mtx[i,1]:

for j from 2 to ColumnDimension(mtx) do

row_gcd:=gcd(row_gcd,mtx[i,j]):

od:

for j from 1 to ColumnDimension(mtx) do

FMtx[i,j]:=simplify(mtx[i,j]/row_gcd):

od:

od:

Finally, we use fraction-free Gaussian elimination to compute the determinant of the

factored-out Dixon matrix. The determinant can be factored again to remove any re-

maining spurious factors. The resultant is the only factor that contains all the variables

(i.e. s, t, v1 in this case) and is usually returned as the last factor by the factor() command.

We end by stopping the timer to see how long the computation took.

tt:=time(): detFMtx:=Determinant(FMtx,‘method’=‘fracfree’): time()-tt;

tt:=time(): fdetFMtx:=factor(detFMtx): time()-tt;

if (nops(fdetFMtx)>1) then OC:=op(-1,fdetFMtx): else OC:=fdetFMtx: fi:

time()-tt1;

As stated before, computing OC(s, t, v1) took less than 4 seconds. However, computing

OC(s, t, v1, v2) took 257 seconds, out of which 255 were spent on computing the determi-

nant using fraction-free Gaussian elimination. Computation of OC(s, t, v1, v2, v3) failed to
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give an answer even after 5 and a half hours. To reduce determinant computation time,

one alternative is to use multivariate Lagrange interpolation using Fermat [56]. We did so

to compute OC(s, t, v1, v2, v3) which took 1 hour 15 minutes. Incorporating the rotation

Figure 5.5: Some outlines of a quartic surface moving from left to right and downwards.

parameters (ω1, ω2, ω3) leads to more complex polynomials and the corresponding occlud-

ing contour computations always took more time than for cases involving the v ′
is. As an

illustration, computation of OC(s, t, ω1, ω2, ω3) took 3 hours 34 minutes.

5.1.3 Real Projections

In the previous sections, we used a very simple projection matrix M which lead to pro-

jection equations that were linear in x and y. Consequently, we eliminated x and y by

substitution and saved computation time. In practice, the projection matrix obtained af-

ter calibrating a real camera is more complex and leads to non-linear projection equations

in x, y, z. For such cases the following heuristic can be applied. We consider the case of

OC(s, t, v1). It should be recalled from Chapter 2 that the Dixon resultant can eliminate

n variables from n + 1 equations.

1. Eliminate x and y from P, Q, H to get a polynomial A(s, t, z, v1)

2. Eliminate x and y from P, Q, V to get a polynomial B(s, t, z, v1)

3. Eliminate z from A, B to get the occluding contour OC(s, t, v1)

It should be observed that here too, for each elimination step,

1. factoring out the Dixon matrix removes spurious factors and reduces determinant

computation time, and

2. using Fermat’s multivariate Lagrange interpolation is always better than computing

the determinant in MAPLE.

Infact, for cases involving more pose parameters, factored-out Dixon matrices and multi-

variate Lagrange interpolation were the only feasible option. As an example, we consider

the following real projection matrix obtained after camera calibration:

Mr =





0.759472 −0.0899725 −0.566994 200.1

−0.264048 −0.863091 −0.234716 297.341

0.000507187 −0.000370792 0.000518946 1.0



 · (5.3)

The image in Figure 5.6 was taken using a camera whose projection matrix was Mr.
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Figure 5.6: An image taken using a camera with projection matrix Mr.

We also replace the quartic surface used earlier by another quartic surface that repre-

sents the paper puncher shown in Figure 5.6 obtained through 3L fitting as shown in

Figure 4.4(a). Therefore we now have a scenario with a real 3D object and a real camera.

OC(s, t, v1, v2, v3) for this scenario was computed on a 2.4 GHz Opteron machine with 8

GB RAM using the above heuristics in 9 hours 37 minutes using Fermat. The polynomial

contained 88179 monomials storing of which required 22.2 MB. The partial derivatives

w.r.t. s and t contained 75582 monomials each while those w.r.t. to the v ′
is contained

74256 monomials each. Evaluation of OC(s, t, v1, v2, v3) on a 288 × 384 image took 9

seconds. Figure 5.7 shows the zero-sets of OC(s, t, v1, v2, v3) obtained for arbitrary values

of the v′
is. Since the size of the occluding contour parametrised by the v ′

is is already

hard to handle for the pose estimation procedure (explained later), we did not attempt

to compute OC(s, t, ω1, ω2, ω3).

Figure 5.7: Some outlines of a real-world puncher viewed through a real camera projection Mr.

Remark For polynomial evaluation on images, a naive approach would be to evaluate

the polynomial for each pixel by subsituting the pose values and the pixel coordinates.

However, this is extremely time-consuming for large polynomials. Evaluation can be

optimised as follows

1. Substitute the numerical values of the pose parameters on the polynomial expression

OC(s, t,v, ω) to obtain OC(s, t).
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2. Add-up all coefficients of OC(s, t) corresponding to the same power-pair sαtβ to

obtain OC∗(s, t).

3. Evaluate OC∗(s, t) on each pixel.

If the degree of the polynomial in s and t is d, then step 2 reduces the size of the polynomial

to
(
2+d
2

)
monomials. So for 4th-order algebraic surfaces, since OC(s, t,v, ω) is of degree

12 in s and t, step 2 will reduce the size to 91 monomials regardless of how large the

polynomial originally was. To illustrate the effect of such an optimisation, evaluation of

88179 term polynomial OC(s, t, v1, v2, v3) from the last section on a 288× 384 image took

1 hour 40 minutes using the naive approach. In contrast, evaluation of the optimised 91

term polynomial OC∗(s, t) took only 9 seconds.

Polynomial # Monomials # Variables Evaluation Time on 288 × 384 image

Original 88179 5 1 hour 40 minutes

Optimised 91 2 9 seconds

Table 5.2: Effect of optimising polynomials before evaluation on images. Substituting pose values in

OC(s, t, v1, v2, v3) and then reducing it to a minimal sized polynomial can significantly reduce evaluation

time.

5.2 Pose Estimation

Let D = {p1, . . . , pq} be a set of image pixels representing a binary image outline of

the object in an arbitrary position. Given D, we can minimise the distance between

outline pixels and the zero-set of OC(s, t,v, ω) to obtain the optimal twist coordinates

v, ω from which the rigid body motion can be computed that transforms the 3D model

into alignment with the image data. As discussed in Chapter 3, there is no closed-form

expression for the exact Euclidean distance between a point and an implicitly defined

curve or surface. Alternatives are:

1. First-order approximations of exact Euclidean distance (see Section 4.4) such as

|OC(s, t,v, ω)|
‖∇OC(s, t,v, ω)‖· (5.4)

2. Algebraic distance |OC(s, t,v, ω)|.

For first-order approximation, the approximate mean square distance ∆2
D(v, ω) between

the set of zeros of OC(s, t,v, ω) and the image point set D is given by

∆2
D(v, ω) =

1

q

q
∑

i=1

OC(pi,v, ω)2

‖∇OC(pi,v, ω)‖2
(5.5)

whereas, for the algebraic distance, it becomes

∆2
D(v, ω) =

1

q

q
∑

i=1

OC(pi,v, ω)2 (5.6)
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5.2.1 Approximate vs. Algebraic Distance

We now compare the approximate and algebraic distance measures. We start with the

simple case of a sphere viewed through projection matrix M as described at the beginning

of this chapter. For illustrative purposes, we assume that our model sphere can only

move in the horizontal direction and is therefore parametrised only by v1. We substitute

v2 = 0, v3 = 0 in (5.2) to to obtain

OC(s, t, v1) =(13600 + t2 − 120t)v2
1 + (−6400000 + 80000s)v1

+ 155100t2 + 1502000000− 24816000s− 18612000t + 155100s2

Experiment 5.2.1. To verify that the mean square distances (5.5) and (5.6) are indeed

minimum at the correct value of v1, we perform the following steps

1. Extract the set of zeros of OC(s, t, 20) which means the outline for the sphere moved

horizontally by -20 units. This gives us the set of image points D = {p1, . . . , pq} as

shown in Figure 5.8.

2. Plot (5.5) for varying v1.

3. Plot (5.6) for varying v1.

Figure 5.8: Outline of sphere translated horizontally by -20 units and viewed through M.

Figure 5.2.1 shows the resulting plots for values of v1 around the true minimum of

20. As can be seen, both plots are minimum at the correct value of v1 = 20. However,

for the case of approximate distance there are also local minima surrounding the global

minimum while the plot for algebraic distance is smoother. It can also be observed that

the approximate distance really does approximate the actual Euclidean distance while

algebraic distance is far-off. However, since we are interested in the minimum only, using

the algebraic distance allows us to avoid the local minima. Some more insight can be

gained by writing out the residual functions for the approximate and algebraic distances.

For clarity, we will abbreviate OC(s, t, v1) by simply OC. For the approximate distance,

the residual function and its partial derivative w.r.t. v1 become

R =

√

OC2

OC2
s + OC2

t

,

∂

∂v1

R =
1

√
OC2

OC2
s+OC2

t




OC ∂

∂v1
OC

OCs
2 + OCt

2 −
OC2

(

OCs
∂

∂v1
OCs + OCt

∂
∂v1

OCt

)

(OC2
s + OC2

t )
2




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Figure 5.9: The mean squared distance ∆2

D
(v1) using (a) approximate distance and (b) algebraic distance

as functions of the sphere translation parameter v1. The global minimum at 20 is surrounded by local

minima on each side for the case of approximate distance while algebraic distance leads to a smoother

residual function.

where OCs and OCt are the appropriate partial derivatives. This requires evaluating the

6 polynomials OC, OCv1, OCs, OCt, OCsv1
, OCtv1

. In contrast, when algebraic distance is

used the same functions become

R = |OC|,
∂R

∂v1
= sign(OC)

∂

∂v1
OC

which requires evaluating only 2 polynomials OC and OCv1. Figure 5.10 shows the result

of Experiment (5.2.1) repeated for the quartic surface from Figure 5.3 using horizontal

translation of -200.

For the case of horizontal as well as vertical translation of the standard model, similar

to Experiment (5.2.1), we set both v1 and v2 to 0 in OC(s, t, v1, v2), extract the zero-set

and then plot the magnitude of the residual vector for −10 ≤ v1 ≤ 10 and −10 ≤ v2 ≤ 10.

For the case of approximate distance, Figure 5.11 shows that the residual vector magnitude

is minimum at the correct values 0 and 0 and that the function is convex far away from

the global minimum. However, this global minimum is surrounded by local minima. For

the case of algebraic distance, Figure 5.12 shows that the residual vector magnitude is

minimum at the correct values 0 and 0 and that the function is convex with no local

minima occurring in a considerable region around the global minimum.

In summary, we conclude that while approximate distance might be more accurate it

leads to residual functions that

1. are larger in size and therefore computationally more expensive, and

2. have more local minima around the global minimum.
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Figure 5.10: The mean squared distance ∆2

D
(v1) using (a) approximate distance and (b) algebraic

distance as functions of a quartic’s pose parameter v1. The global minimum at 200 is surrounded by

numerous local minima on each side for the case of approximate distance while algebraic distance leads

to a smoother residual function.

(a) Residual is convex far away from

the global minimum. Local minima

are close to the global minimum.

(b) A close-up.

Figure 5.11: The sum of squared approximate distances as a function of the sphere translation param-

eters v1 and v2. The global minimum at 0, 0 is surrounded by local minima.
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(a) Residual is con-

vex around the global

minimum.

(b) A close-up.

Figure 5.12: The sum of squared algebraic distances as a function of the sphere translation parameters

v1 and v2. The function is smooth and convex around the global minimum at 0, 0.

Using the approximate distance measure becomes practically infeasible when real projec-

tion matrices are used since they lead to occluding contours that are very large polynomials

as discussed in Section 5.1.3. On the other hand, while algebraic distance is nowhere near

an exact distance measure, it leads to residual functions that

1. are smaller in size and therefore computationally less expensive, and

2. have fewer local minima.

5.2.2 Experiments

As can be seen from Figure 5.2.1, the optimal v1 minimises ∆2
D(v1). Since ∆2

D(v1) is

non-linear in v1, a non-linear minimisation technique such as the Levenberg-Marquardt

algorithm is required to find the optimal v1. For the general case of estimating (v, ω),

the non-linear least squares problem involves minimising the length of the residual vector

R = (R1, . . . , Rq):

‖ R(v, ω) ‖2=

q
∑

i=1

Ri(v, ω)2

where

Ri(v, ω) = |OC(pi,v, ω)2|
is the algebraic distance from point pi to Z(OC(v, ω)). Once R is defined, we can start

the minimisation (see details in Appendix A.1). In the following we will check robustness

of the estimation procedure in the presence of increasing values of radial noise added to

the image silhouette pixels. By radial noise, we mean that each pixel is translated by a

normally distributed random variable lying between 0 and a maximum radius value and

then rotated around the original position by an angle uniformly distributed between 0◦

and 360◦. For the noise experiments, maximum noise radius was increased from 0 to 12

pixels in increments of 4 pixels. Standard deviation was always kept at half the maximum

noise radius. We will explore both the monocular and stereo cases. For the monocular
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case, we use projection matrix M as described earlier. For the stereo setup, we use an

additional projection matrix M̄:

M̄ =





−80 0 100 104000

−60 −100 0 48000

−1 0 0 800



 ·

M̄ represents projection onto a 120× 160 image plane parallel to the yz-plane and placed

at x = 300 with focal point (400, 0, 0).

Scenario 1

1. Surface: An ellipsoid1 x2

52 + y2

52 + z2

82 − 72 = 0

2. Projection: M

3. Pose Parameters: v1, v2, v3.

4. Ground-truth: 50, 50, 250.

(a) Scenario 1: An ellipsoid

viewed through projection matrix

M.

(b) Scenario 2: An ellipsoid

viewed through projection matri-

ces M and M̄.

Figure 5.13: The monocular and stereo setups.

Figure 5.14 shows how the minimisation proceeds in the image plane starting from an

initial estimate of 20, 20, 360 for which the corresponding outline is shown in green. The

blue outlines illustrate the convergance to the ground-truth of 50, 50, 250 shown in red.

While we use algebraic error for minimisation purposes it does not give much help in

determining the accuracy of the estimated pose. Therefore we use the Euclidean norm

between the estimated pose and ground-truth to check accuracy. For further analysis, we

also compute an error between outline images as follows

1. Compute Euclidean distance transform of ground-truth outline.

1This surface is also called a prolate spheroid
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Figure 5.14: Minimisation in the image plane. The green outline corresponds to the model in the initial

estimated position. The blue outlines are obtained during successive iterations of the minimisation. Red

outline is the true position.

2. Compute Euclidean distance transform of estimated outline.

3. Compute image error as the mean absolute difference of the two distance transform

images.

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Noise

A
lg

be
ra

ic
 E

rr
or

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

Noise

E
uc

lid
ea

n 
E

rr
or

0 2 4 6 8 10 12
28.8

28.9

29

29.1

29.2

29.3

29.4

29.5

Noise

Im
ag

e 
E

rr
or

Figure 5.15: Variation of algebraic, Euclidean and image errors with increasing noise for scenario 1.

Figure 5.16 shows image outlines affected by radial noise. Robustness to such noise is

illustrated in Figure 5.15. It should be observed that Euclidean error rapidly increases for

a noise radius of 12 pixels while both algebraic and image errors do not suffer from such

a drastic change. The reason for this is illustrated by plotting the occluding contours for

the estimated pose −47,−44,−542 for noise radius 12 and the ground-truth as shown

in Figure 5.17. As can be seen, both occluding contours are very similar despite the

difference in poses. This is a clear example of non-uniqueness of the pose in the image

plane. The reason for this particular ambiguity is that the tangent cone extends to both

sides of the focal point and hence there are 2 poses for each outline, one real and one

virtual. For instance, with focal point 0, 0,−400 of projection matrix M, the virtual

counterpart of the pose 50, 50, 250 is −50,−50, 550. Using a stereo setup such as the one

shown in Figure 5.13(b) allows us to reduce the effect of such ambiguities.
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Figure 5.16: Left to right: Image outlines affected by radial noise of radius 0,4,8 and 12 pixels. Top

row is the outline as seen from projection matrix M while bottom row is for the outline as seen from

projection matix M̄.

(a) OC(50, 50, 250) (b) OC(−47,−44, 542)

Figure 5.17: Two distinct poses can reveal very similar outlines. The second pose −47,−44, 542 is very

close to the ‘virtual counterpart’ −50,−50, 550 of the first pose 50, 50, 250.

Scenario 2:

1. Scenario 1 combined with projection matrix M̄.

For a stereo setup with occluding contours OC1 and OC2, the combined residual function

using algebraic distance can be defined as

R =
√

OC2
1 +

√

OC2
2 (5.7)

whose partial derivative w.r.t. vi

∂

∂vi
R = sign(OC1)

∂

∂vi
OC1 + sign(OC2)

∂

∂vi
OC2 (5.8)

Variation of errors with increasing noise for the stereo setup is shown in Figure 5.18. It

can be observed that accuracy improved since Euclidean error did not jump drastically

for a noise radius of 12 pixels.
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Figure 5.18: Variation of algebraic, Euclidean and image errors with increasing noise for stereo setup

of scenario 2.

Scenario 3

1. Surface: A real-world puncher represented as a 4th-order algebraic surface as shown

in Figure 4.4(a) in Chapter 4.

2. Projection: Real-world projection matrix Mr from Section 5.1.3

We start with the case of just 1 pose parameter v1. Here too, the choice between algebraic

and approximate distance is made easier by observing the residual plots for different

values of v1 around the ground-truth in Figure 5.19. It can be seen that the approximate

distance leads to an error profile with many local minima while algebraic distance leads

to a smooth error profile. Given an initial pose estimate for the puncher in Figure 5.6,
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2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

(a) Using first-order approximation of exact

distance.
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(b) Using algebraic distance.

Figure 5.19: The mean squared distance ∆2

D
(v1) using (a) approximate distance and (b) algebraic

distance as functions of a puncher’s pose parameter v1. The global minimum at 0 is surrounded by

numerous local minima on each side for the case of approximate distance while algebraic distance leads

to a smoother residual function.
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we try to estimate the correct pose. Figure 5.20 shows the convergence behaviour of our

algorithm when approximate distance is used. Starting from an initial estimate of 300,

the minimisation gets stuck in a local minimum at 136. This behaviour conforms to the

residual profile in Figure 5.19(a). For the case of algberaic distance, Figure 5.21 shows

Figure 5.20: Convergence behaviour when approximate distance is used. Starting from an initial estimate

of 300, the minimisation gets stuck in a local minimum at 136. This behaviour conforms to the residual

profile in Figure 5.19(a).

the convergence behaviour of our algorithm when the image outline is affected by missing

data and radial noise. It can be seen that in this particular instance, results are quite

robust. Robustness to noise and missing data is also exhibited in the error graphs shown

in Figure 5.23. Figure 5.2.2 shows the convergence behaviour when 2 pose paramters v1

and v2 are estimated.

5.3 A Hybrid Approach

In this section we present a hybrid explicit-implicit approach. It is basically an extension

of the explicit approach used by Rosenhahn in [58] which can be summarised as

1. Reconstruct projection rays from the image points

2. Find correspondences between the projection rays and the 3D model points.

3. Estimate the pose using this correspondence set.

4. Goto 2.

The only change we make to this approach is that instead of using all 3D model points in

step 2, we can use only those points that form the contour generator. To find such points

we use the implicit algebraic representation P (x) = 0 of the 3D model and perform the

following test on each point x of the 3D model

2a. Compute the normal ∇P (x) at x. Normalise it.

2b. Compute the ray r = x − f passing through x and the focal point f . Normalise it.
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2c. If r · ∇P (x) < ε for some threshold ε close to 0, x lies on the contour generator.

Figure 5.25 shows two views of the contour generator of the puncher model with respect

to a fixed focal point. These results can be improved by using the approach used by Ilic

in [59] whereby the search for the contour generator is formulated as the solution to an

ordinary differential equation (ODE). Let x(t), t ∈ [0, 1] be the contour generator on the

algebraic surface P (x) = 0. Then x(t) is a solution of the ODE

∂x(t)

∂t
=

(H(x(t)))(x(t) − f) ×∇P (x(t))

‖(H(x(t)))(x(t) − f) ×∇P (x(t))‖ (5.9)

where H(x(t)) is the Hessian matrix of P (x(t)), ∇P (x(t)) is the gradient vector and f

is the focal point of the camera. Solving this ODE requires an initial contour generator

point x(0).

Since in [58] it is possible to weight the correspondences in step 3, we can also use the

other (non-contour generating) 3D model points with lesser weights. The value of the dot

product r · ∇P (x) can also be used to choose appropriate weights. Figure 5.26 shows the

convergence behaviour of this hybrid approach for the puncher model. Given an initial

pose estimate of the model, the contour generator (shown in yellow) is computed and

registered with the reconstructed projection rays to give a new pose estimate. The model

is transformed by this pose estimate and the process is repeated until convergence.
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Figure 5.21: Convergence behaviour using algebraic distance in presence of noise and missing data.
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Figure 5.22: Image outline affected by missing data and radial noise. Top to bottom: 100%, 5% data.

Left to right: 0, 12 pixels radial noise.
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Figure 5.23: Variation of algebraic, Euclidean and image errors with increasing noise for scenario 3

using 5% image data.
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Figure 5.24: Convergence behaviour using algebraic distance when estimating 2 pose parameters v1, v2.

Figure 5.25: 2 views of the occluding contour (in blue) of the puncher model with respect to a fixed focal

point.
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(a) Reconstructed rays, initial pose and its corresponding contour

generator (in yellow).

(b) Convergence behaviour.

Figure 5.26: Given an initial pose estimate of the model, the contour generator (in yellow) is computed

and registered with the reconstructed projection rays to give a new pose estimate. The model is transformed

by this pose estimate and the process is repeated until convergence.





Chapter 6
Conclusion

We have explored the problem of silhouette-based 2D-3D pose estimation using implicit

algebraic surfaces. Our approach consisted of 3 phases.

1. Modelling of 3D objects using implicit polynomials.

2. Projection of algebraic contour generators onto algebraic occluding contours.

3. Pose estimation using image silhouette data and occluding contour equations.

The first two phases involve offline symbolic and numeric computation. Their result is

then used in the final online pose estimation phase.

Our work highlights the fundamental problem of implicit formulations of projective

registration, namely the rapidly increasing degree of projected polynomials. This leads

to two difficulties:

1. How can such high-degree projected polynomials be computed?

2. Once computed, how can we use them for pose estimation purposes?

To address the first difficulty, we have used advanced heuristics for the Dixon resultant

developed by Kapur et al. [38] combined with the specialised computer algebra system

Fermat. We have been able to compute real-world projections of 4th-order algebraic

surfaces parametrised by 3D translation parameters. To the best of our knowledge, this

is a small step forward in algebraic surface projections.

The second difficulty, however, still remains. Since it is problematic to compute projec-

tions of 4th-order algebraic surfaces using all 6 pose parameters, the estimation problem

needs to be decoupled into separate translation and rotation estimation. Furthermore,

we have used linearised twist parameters to represent pose which was succesfully used

for a fast implementation of explicit pose estimation in [58]. While this leads to signif-

icantly smaller polynomials, the approach can only work when projection of algebraic

surfaces is performed online. This calls for exploring polynomial algebra libraries such

as SYNAPS [62] and those developed under the FRISCO project [28] such as Algébre

Linéaire pour les Polynômes (ALP) [4] and MARS [1] which have some multivariate

resultant implementations.
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These difficulties beg the question, “Why bother with implicit polynomials when they

are hard to compute and then hard to use?”. The reason for exploring implicit polynomials

is that they offer a global description of objects and hence can potentially succeed in

situations where methods based on local descriptions fail.

To completely avoid dealing with high-degree projected polynomials, we have also

presented a hybrid implicit-explicit approach similar to the one presented by Ilic et al. [59].

Staying purely in the implicit domain, we can attempt to reduce polynomial degrees by

representing 3D objects using Fourier coefficients which can then be implicitised [70].



Appendix A
Appendix

A.1 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is a popular heuristic for finding the minimum of a

function F (u) that is a sum of squares of nonlinear functions of u = (u1, · · · , ur),

F (u) =

q
∑

i=1

Ri(u)2 (A.1)

where the Ri are called residuals, q ≥ r is the number of data points. The goal of

the Levenberg-Marquardt algorithm is to find the parameter vector u for which (A.1) is

minimised. Alternatively, to find the u for which the magnitude of the residual vector

R(u) = (R1(u), . . . , Rq(u)) is minimised. The algorithm starts with an initial estimate

u0 and iteratively converges to a local minimum based on the following iteration step:

uk+1 = uk − (H(uk) + µkdiag(H))−1J(uk)tR(uk) (A.2)

where J(u) is the Jacobian of R with respect to u

Jij(u) =
∂Ri

∂uj
(u),

H(u) is the Hessian of R with respect to u

H(u) = J(u)J(u)t,

and µ is a small nonnegative number varied during iterations to maneuver the minimi-

sation between gradient descent and Gauss-Newton iteration depending on how far the

estimate is from a local minimum.
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