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Abstract.  Within human trust related behaviour, according to the literature from the domains of Psychology and 

Social Sciences often non-rational behaviour can be observed. Current trust models that have been developed 

typically do not incorporate non-rational elements in the trust formation dynamics. In order to enable agents that 

interact with humans to have a good estimation of human trust, and take this into account in their behaviour, trust 

models that incorporate such human aspects are a necessity. A specific non-rational element in humans is that they 

are often biased in their behaviour. In this paper, models for human trust dynamics are presented incorporating 

human biases. In order to show that they more accurately describe human behaviour, they have been evaluated 

against empirical data, which shows that the models perform significantly better. 

Keywords.  Trust, Biases, Modelling, Validation. 

 

 

                                                             
1 The work presented in this paper is a significant extension by more than 40% of (Hoogendoorn, Jaffry, Maanen, and Treur, 2011). 



1. Introduction 

Within the domain of multi-agent systems, a variety 

of trust models have been proposed (e.g., see [13], 

[14] for an overview). Often, such trust models are 

utilized in an environment in which software agents 

should make choices based upon their levels of trust, 

and hence, such models aim to optimize the behavior 

of the agent by using the most appropriate trust 

function. An example of such a model is for instance 

described in [12]. In situations where software agents 

interact with humans, trust models that are 

incorporated in these agents may have a completely 

different purpose: to estimate the trust levels of the 

human over time, and take that into consideration in 

its behavior, for example, by providing advices from 

other trustees that are trusted more. If this is the 

purpose of the trust model, then the model should 

also explicitly incorporate non-rational human 

aspects. Examples of models taking into account 

various human aspects are [3], [7], [11].  

In the literature in the domain of Psychology and 

Social Sciences it has been shown that one important 

non-rational aspect within the formation of trust is 

the incorporation of biases. Several biases have been 

observed whereby the culture bias is one of the most 

reported ones. In [20] it is shown that humans from 

collectivistic cultures tend to have a bias towards 

trusting members that belong to the same group and 

avoid the persons from outside the group. In [8] also 

a comparison between individualistic and 

collectivistic cultures is made which shows that the 

trust of the members of an individualistic society is 

less negatively biased towards persons from outside 

their group. Other authors also emphasize the 

existence of such a bias in general, e.g. [15]. If the 

objective of a computational model of trust is to 

create a model that represents human trust in a 

natural and accurate manner, such biases need to be 

taken into account in the model.  

In this paper, a model has been developed that 

incorporates biases in a model for trust dynamics. In 

order to do so, an existing trust model is taken as a 

point of departure (cf. [11]), which was applied, for 

example, in [17], [18], [19]). Biases have been added 

to this model using a number of different approaches 

for the manner in which biases affect the level of 

trust. Introducing a trust model with the purpose to 

model human behaviour in a more realistic way 

requires a thorough evaluation of the model. 

Therefore in this paper, a number of approaches have 

been used to evaluate the introduced models. First of 

all, the behaviour of the models themselves have 

been rigorously compared and analyzed using 

identified emerging properties. Also, an extensive 

mathematical analysis of monotonicity, equilibria 

and behaviour around equilibria has been performed 

for this purpose. In addition to these types of formal 

analysis, also an empirical analysis has been 

performed. The models have been validated against 

empirical data that has been obtained from an 

experiment conducted with human subjects. Such a 

full empirical validation is not so common for 

computational trust models. However, some authors 

have done some form of validation.  For instance, in 

(Jonker, Schalken, Theeuwes and Treur 2004) an 

experiment has been conducted whereby the trends in 

human trust behaviour have been analyzed to verify 

properties underlying trust models developed in the 

domain of multi-agent systems. However, no attempt 

was made to exactly fit the model to the trusting 

behaviour of the human. The outcome of the 

validation experiment presented in the current paper 

shows that the introduced bias-based models perform 

significantly better than comparable models without 

explicit representation of biases.  

This paper is organized as follows. First, in 

Section 2 six new human bias-based trust models are 

introduced across computational and human 

cognitive dimensions. Thereafter, simulation results 

of these bias-based trust models are presented in 

Section 3. The formal analyses of the newly designed 

bias-based trust models through logical and 

mathematical means are described in Section 4 and 5, 

respectively. Thereafter, the human-based trust 

experiment is explained in Section 6. The validation 

results of the models based on empirical data 

collected in the experiment described in Section 6 are 

presented in Section 7, and finally, Section 8 is a 

discussion. 

 
2. Models for Biased Trust Dynamics 

In this section a number of trust models are proposed 

that incorporate biased human behaviour. In order to 

be able to model bias-based trust dynamics, an 

existing trust model aimed at representing human 

trust is taken as a basis. This is a well-known model 

presented in [11] and applied, for example, in [17], 

[18], [19]. The model is expressed as follows: 
 

𝑇 𝑡 + ∆𝑡 =  𝑇 𝑡 + 𝛾  𝐸 𝑡 − 𝑇 𝑡   ∆𝑡         (1) 

 



3 
 

In this trust model, it is assumed that the human 

receives a certain experience at each time point, E(t). 

The experience is represented by a value in the 

interval [0, 1]. It is then compared with the current 

trust level T(t) and the difference is multiplied with a 

trust update speed factor . This difference is then 

multiplied by the chosen step size ∆t and added to the 

current trust level to obtain a new trust level. 

The model described above does not include 

biases; therefore in this paper extensions of the 

model are introduced incorporating biases. This can 

be done in different manners. It is assumed that 

human biases can affect trust in a number of ways. 

More specifically, there are different ways in which 

the bias plays a role in the formation of a new trust 

value; this is referred to as the cognitive dimension in 

Fig. 1. In this paper, three options are distinguished:  

 
(a) the bias solely plays a role in the way in which the human 

perceives an experience with a specific trustee: the 
experience is transformed from a certain objective value to a 

subjective biased experience value, which is then used to 

derive a new trust value.  
(b) the experience is again perceived differently based upon the 

bias, but the current trust value also plays a role in the 

perception of the experience. 

(c) the experiences are not biased, but the trust value itself is 

biased.  

 

Besides these different possibilities of modelling the 

point at which the bias plays a role in the trust 

formation process, the precise way in which the bias 

is incorporated within the model can also be varied. 

There can be assumed a more linear trend in the bias 

behaviour, or a logistic type of trend can be assumed; 

this is referred to as the computational dimension in 

Fig. 1. Given these dimensions, in total 6 models for 

incorporating trust in the unbiased model expressed 

in equation (1) can now be formulated (see Fig. 1):  

 
1. linear model with biased experience  
2. linear model with biased experience influenced by current 

trust  

3. linear model with bias solely determined by current trust  
4. logistic model with biased experience  

5. logistic model with biased experience influenced by current 

trust  
6. logistic model with bias solely determined by current trust  

 

The above models are abbreviated as LiE, LiET, LiT, 

LoE, LoET, and LoT respectively. In order to 

incorporate the biased behaviour in the model 

presented in equation (1), functions have been 

defined that take the current experience (for models 

LiE and LoE), the experience and the trust (for 

models LiET and LoET), or the trust value itself (for 

models LiT and LoT) and transforms that into a 

biased value. This biased value can then be used to 

calculate the new trust value based upon equation (1). 
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Fig. 1. Bias-based trust models 

2.1 Trust models with biased experience 

For the models that express the bias solely based 

upon the experience, the following two equations are 

used (for linear and logistic respectively): 

 
LiE:    

𝑓 𝐸 𝑡  = 𝐸 𝑡 +  2𝛽 − 1  1 − 𝐸 𝑡    𝑤ℎ𝑒𝑛 𝛽 > 0.5 

𝑓 𝐸 𝑡  = 2𝛽𝐸 𝑡                                         𝑤ℎ𝑒𝑛 𝛽 ≤ 0.5 

LoE:  

𝑓 𝐸 𝑡  = 1  1 + 𝑒 −𝜎 𝐸 𝑡 −𝜏     

 

In the first equation, β is the bias parameter from the 

interval [0, 1]. Here values for β of 0.0, 0.5 and 1.0 

represent an absolute negative, neutral and absolute 

positive bias, respectively. It can be seen that for the 

case of a positive bias (i.e. β > 0.5) the current 

experience is increased with a factor dependent on 

the positiveness of the bias (the more positive the 

bias, the more the objective experience is increased). 

For the logistic equation (LoE), σ and τ are the 

steepness and threshold parameters for the logistic 

transformation. In the logistic transformation τ is 

assumed to represent the human’s bias. It is assumed 

that this value has an inverse relationship with β (i.e. 

τ = 1 – β). Furthermore E(t), and T(t) are the 

experience and human trust level on the given trustee 

at time point t, respectively. The resulting value of 

the function f(E(t)) is the biased experience.  

This function can be incorporated into the base 

model (equation (1)) in a general setting as follows: 

 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 𝛾  𝑓 𝐸 𝑡  − 𝑇 𝑡  ∆𝑡                    (2) 
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For the specific (linear and logistic) cases considered 

this becomes: 

     

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 𝛾  𝐸 𝑡 +  2𝛽 − 1  1 − 𝐸 𝑡  

− 𝑇 𝑡  ∆𝑡  𝑤ℎ𝑒𝑛 𝛽 ≥ 0.5 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 𝛾 2𝛽𝐸 𝑡 − 𝑇 𝑡  ∆𝑡    𝑤ℎ𝑒𝑛 𝛽 ≤ 0.5 

 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 𝛾  1  1 + 𝑒 −𝜎 𝐸 𝑡 −𝜏    − 𝑇 𝑡  ∆𝑡 

2.2 Trust models with biased experience affected by 

current trust 

In the second set of bias equations, the bias plays a 

role in combination with the current trust value and 

the experience, as expressed below.  

 
LiET: 

 𝑓 𝐸 𝑡 , 𝑇 𝑡  = 𝛽  1 −  1 − 𝐸 𝑡   1 − 𝑇 𝑡   +

+ 1 − 𝛽 𝐸 𝑡 𝑇 𝑡 − 𝑇 𝑡  
LoET:  

𝑓 𝐸 𝑡 , 𝑇 𝑡  = 1  1 + 𝑒 −𝜎 𝐸 𝑡 +𝑇 𝑡 −𝜏    − 𝑇 𝑡  

 

The first equation (linear model) expresses that the 

more positive the bias is, the more the evaluation will 

be increased depending on the distance of the 

experience and the trust to the highest value. The 

second is the logistic variant of the model, whereby 

the combination of the experience and the trust are 

used in the threshold function.  

The function can be inserted into the base model 

in a general setting as follows: 

 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 𝛾  𝑓 𝐸 𝑡 , 𝑇 𝑡   ∆𝑡                       (3) 

 

For the specific (linear and logistic) cases considered 

this becomes: 

 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 𝛾  𝛽  1 −  1 − 𝐸 𝑡   1 − 𝑇 𝑡   

+  1 − 𝛽 𝐸 𝑡 𝑇 𝑡 − 𝑇 𝑡  ∆𝑡 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 

           𝛾  1  1 + 𝑒 −𝜎∗ 𝐸 𝑡 +𝑇 𝑡 −𝜏    − 𝑇 𝑡  ∆𝑡 

2.3 Trust models with bias solely determined by 

current trust 

The final set of equations concerns the bias solely 

based upon the trust level, and not on the experience 

itself. The following two equations are used for this 

purpose: 

 
LiT:  

𝑓 𝑇 𝑡  = 𝑇 𝑡 +  1 − 𝑇 𝑡   1 − 2𝛽  1 − 𝑇 𝑡   

    𝑤ℎ𝑒𝑛 𝛽 > 0.5 

𝑓 𝑇 𝑡  = 𝑇 𝑡 +  1 − 𝑇 𝑡   1 − 2𝛽 𝑇 𝑡  

    𝑤ℎ𝑒𝑛 𝛽 ≤ 0.5 
LoT:  

𝑓 𝑇 𝑡  = 𝑇 𝑡  

       +  1 − 𝑇 𝑡   𝑇 𝑡 − 1  1 + 𝑒 −𝜎 𝑇 𝑡 −𝜏      

 

The equations follow the same structure as seen for 

the experience-based bias, except that now the trust 

value is used.  

For the general setting it is combined with the 

base model as follows: 

 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 𝛾  𝐸 𝑡 − 𝑓 𝑇 𝑡   ∆𝑡                 (4) 

 

For the specific (linear and logistic) cases considered 

this becomes: 

 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 

    𝛾  𝐸 𝑡 −  𝑇 𝑡 +  1 − 𝑇 𝑡   1 − 2𝛽  1 − 𝑇 𝑡    ∆𝑡 

    𝑤ℎ𝑒𝑛 𝛽 ≥ 0.5 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 

    𝛾  𝐸 𝑡 −  𝑇 𝑡   +  1 − 𝑇 𝑡   1 − 2𝛽 𝑇 𝑡   ∆𝑡 

    𝑤ℎ𝑒𝑛 𝛽 ≤ 0.5 

𝑇 𝑡 + ∆𝑡 = 𝑇 𝑡 + 

 𝛾  𝐸 𝑡  𝑇 𝑡 +  1 − 𝑇 𝑡   𝑇 𝑡 

− 1  1 + 𝑒 −𝜎 𝑇 𝑡 −𝜏       ∆𝑡 

 

3. Simulation Results for the Biased Human 

Trust Models 

In order to observe the behaviour of bias-based trust 

models described in the previous section, several 

simulation experiments are performed. In these 

simulation experiments first each model is simulated 

independently against a set of experience values and 

then these models are compared using a novel 

technique called mutual mirroring of models as 

described in [9]. 

3.1 Single model comparisons 

In this first experiment, merely one trustee for which 

an agent has to form trust is considered. In this 

section the results of one of these experiments is 

presented in detail. In Table 1 the experimental 

configuration for this simulation is described. Here it 
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can be seen that bias parameter is changed from 0.0 

to, 0.5 and 1.0 which represents negative, neutral and 

positive bias respectively. For comparison purposes, 

the bias parameter τ for the logistic model is 

calculated by means of the following equation: τ = 1 

– β. The trust rate change γ is taken as 0.25. 

Furthermore, the initial trust value is taken as 0.50 

which means that the human has neutral trust at time 

point 0. The step size (Δt) is set to 0.50.  

 
Table 1: Experimental configuration for simulation experiments 

 

Quantity Symbol Value 

Bias parameter β (linear model)  

τ (logistic model) 

0.00, 0.50, 1.00 

1.00, 0.50, 0.00 

Trust change rate  Γ 0.25 

Time step ∆t 0.50 

Initial trust  T(0) 0.50 

Steepness  Σ 5 

Experiences E (t) Periodic (0.0, 0.5, 1.0) on 10 
time steps each 

 

The experience sequence used in this experiment is 

represented in Fig. 2. It can be seen that experience 

provided in this experiment change periodically 

between the values 0.0, 0.5 and 1.0 respectively with 

a period of 10 time steps. Each of these experience 

values represents negative, neutral and positive 

experience respectively. This experience sequence is 

used to see the behaviour of these models on and 

between varying extremes. 

 
Fig. 2. Experience sequence 

 

In Figures 3-5 the results of the simulations given the 

experience sequence introduced above are shown.  

 

In Fig. 3 the agent has a negative bias towards the 

trustee. A simulation for a neutral bias is shown in 

Figure 4, whereas a positive bias is used in Figure 5. 

It can be observed in the case of the negative bias 

that both the LiE and LiET converge to no trust 

(value 0) despite the fact that the trustee gives some 

positive experiences. The LiT, LoT, and LoE variants 

show almost similar trends compared to the base trust 

model but with a much lower trust value (which is 

precisely as desired due to the negative bias). The 

final variant of the model (LoET) shows an undesired 

result: the trust is actually higher than the base 

model. This is due to higher parameter value of 

parameter σ (steepness) which is 5. For lower values 

of the steepness (< 3) this model shows desired 

results as well (but has not been shown for the sake 

of brevity). 

 

 
Fig. 3. Simulation results for absolute negative bias  

(β=0 and τ=1, σ=5) 

 

In Fig. 4 a neutral bias i.e. (β=0.5 and τ=0.5, σ=5) is 

used, and all the models except for one show 

behaviour similar to the baseline model (which is as 

expected as there is no bias). The LoET does 

however show very different and undesirable 

behaviour as it converges to maximum trust value. 

This relates to the fact that for this type of model the 

value 0.5 does not show an upward-downward 

symmetry as required for a non-biased case. 

Therefore this model does not qualify well in this 

respect. 

 

 
Fig. 4. Simulation results for neutral or no bias 

 (β=0.5 and τ=0.5, σ=5) 

 

In Fig. 5 an absolute positive bias is set (i.e. β=1 and 

τ=0, σ=5). In the Figure, the LiE. LiET, and LoET 
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converge to maximum trust (value 1) despite the fact 

that the trustee gives some negative experiences. This 

behavior is not completely as desired, but could be 

adjusted by taking a different steepness value. LoE, 

LiT and LoT show an almost similar trend as the 

baseline trust model does, but with higher in trust 

value, precisely is as desired. 
 

 
Fig. 5. Simulation results for absolute positive bias  

(β=1 and τ=0, σ=5) 

 

3.2 Mutual mirroring of the bias-based trust models  

 

To analyze the generalization capacity of these 

models a novel technique named mutual mirroring of 

models is used as introduced in [9]; see also [7]. In 

this method, a specific trace (simulation run) of a 

source model is taken as a basis, and a parameter 

tuning approach (e.g., exhaustive search within the 

parameter space) for a target model is performed to 

see how closely the target model can describe the 

trace of the source model (i.e., what the set of 

parameters is with minimum error). This gives a 

good indication how much the models can describe 

each others’ behaviour, and some indication of 

similarity. The mirroring is also done in the opposite 

direction (i.e., from a trace of the target model to 

parameters of the source model). This process of 

mirroring both models into each other is called 

mutual mirroring of models. The mirroring process 

can provide a good indication on the similarity of 

models. For more details on the approach see [7], [9]. 

The mirroring techniques have been applied to 

the models introduced in Section 2. The results are 

shown in Table 2. Here, the columns represent the 

target models while the rows represent the source 

models. 

For a specific trace of the source model (given a 

certain set of parameter settings) the parameters of 

the target model are exhaustively searched to 

generate behaviour similar to the trace of the source 

model with minimum root mean squared error. The 

values in each cell of the table represent the average 

error for nine different source model traces generated 

with different bias values and experience sequences.  

In the first row of the table it can be seen that on 

average the source model LiE can be approximated 

using the LiE, LiET, LiT, LoE, LoET and LoT 

variants with error of 0.00, 0.04, 0.22, 0.12, 0.14 and 

0.22 respectively. Furthermore in the last column of 

the first row it can be seen that the average error of 

the mirroring process with all other models is 0.12. 

This seems to be the most difficult behaviour to 

approximate on average as the other rows show a 

lower average value. Especially the behaviour of the 

LiT and LoE can be very well approximated by the 

other models. Furthermore, in the last row the values 

are shown that indicate how well a model can 

describe the other model’s behaviour. This shows 

that LiE and LiET can describe many of the source 

models very well. 

 
Table 2. Results for mutual mirroring of the models 

 

  Target Model 

Source 

Model 

 LiE LiET LiT LoE LoET LoT AVG 

LiE 0.00 0.04 0.22 0.12 0.14 0.22 0.12 

LiET 0.02 0.00 0.19 0.10 0.13 0.19 0.11 

LiT 0.01 0.03 0.00 0.01 0.06 0.00 0.02 

LoE 0.01 0.03 0.09 0.00 0.08 0.09 0.05 

LoET 0.03 0.05 0.23 0.11 0.00 0.22 0.11 

LoT 0.01 0.02 0.00 0.01 0.05 0.00 0.02 

 AVG 0.02 0.03 0.12 0.06 0.08 0.12   

 

4. Logical Verification of the Bias-based Trust 

Models 

When developing a new model, a thorough analysis 

of the behaviour is required to have sufficient 

confidence in the appropriate behaviour of the model. 

One way to perform such an analysis is to conduct a 

mathematical analysis (see Section 5). However, 

given the complexity of the models proposed in this 

paper, the analysis of more complex (temporal) 

patterns might not be feasible using these techniques. 

Therefore, in this section, certain desired emergent 

properties are discussed with respect to the bias-

based trust models that express complex patterns 

over time. To show that the models indeed generate 

this desired behaviour, these properties have been 

verified upon the simulation traces that have been 

produced by the models proposed in Section 2. This 

does not prove a complete adherence of the model to 
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the properties, but it does shown that for the selected 

simulation runs (which are of course carefully 

selected in order to have representative results) 

adhere to the properties or not In order to perform 

this verification in an automated fashion, the hybrid 

temporal language TTL (Temporal Trace Language, 

cf. [2], [16]) and its software environment has been 

used. In addition to a dedicated editor TTL features 

an automated verification tool that automatically 

verifies specified properties against traces that have 

been loaded in the verification tool. The language 

TTL is explained first, followed by a presentation of 

the desired properties related to trust. 

 
4.1 Temporal Trace Language (TTL)  

The hybrid temporal language TTL supports formal 

specification and analysis of dynamic properties, 

covering both qualitative and quantitative aspects. 

TTL is built on atoms referring to states of the world, 

time points and traces, i.e., trajectories of states over 

time. In addition, dynamic properties are temporal 

statements that can be formulated with respect to 

traces based on the state ontology Ont in the 

following manner. Given a trace  over state ontology 

Ont, the state in  at time point t is denoted by state(, t). 

These states can be related to state properties via the 

formally defined satisfaction relation denoted by the 

infix predicate |=, i.e., state(, t) |= p denotes that state 

property p holds in trace  at time t. Based on these 

statements, dynamic properties can be formulated in 

a formal manner in a sorted first-order predicate 

logic, using quantifiers over time and traces and the 

usual first-order logical connectives such as , , , , 

, . As a built-in construct in TTL, summations can 

be expressed, indexed by elements X of a sort S: 


X:S  case((X), V1, V2) 

Here for any formula (X), the expression 

case((X), V1, V2)  

indicates the value V1 if (X) is true, and V2 otherwise. 

For example, 


X:S  case((X), 1, 0) 

simply denotes the number of elements X in S for 

which (X) is true. As expressing counting and 

summation in a logical format in an elementary 

manner in general leads to rather complex formulae, 

this built-in construct is very convenient in use. For 

more details on TTL and the precise functioning of 

the checker tool, see [2], [16]. 

4.2 Verification of Bias-based Trust Models 

This section describes verification process for the 

bias-based trust models presented in Section 2. First, 

in Section 4.2.1 the properties that have been 

identified for bias-based trust models are introduced 

and then in Section 4.2.2 results of the checks are 

presented. 
 

4.2.1 Properties for bias-based trust models  

Four properties have been identified with respect to 

biased behaviour of human trust. The first property 

expresses the general principle of the bias, namely 

that once a person has a more positive bias towards a 

trustee, this trustee will more frequently be the most 

trusted trustee, as expressed in property P1 below. 

Note that in this property (and also for properties P2 

and P3), it is assumed that the bias does not change 

during the simulation, and hence, the value at the first 

time point is selected. 

 
P1: General bias property 

If within two traces with the same experience sequence in 

one trace an agent has a more positive bias towards a 

trustee compared to the other trace, and the agent has the 

same biases for the other trustees, then the trustee will 

more frequently be the trustee with the highest trust value 

in the trace with the higher bias compared to the trace with 

the lower bias. For example, this then results in this trustee 

being selected more frequently. 

The formalization of the property is shown below. 

First, it is checked whether the traces that are being 

compared contain the same experience sequence. 

Furthermore, it is checked whether the biases for the 

trustee tr1 considered differ (and in fact, is higher in 

the first trace). Note that this comparison is done at 

time point 0 as it is assumed that the bias does not 

change over time in a single run. Furthermore, it is 

checked whether there exists a single bias value the 

agents has for all other trustees in both traces, then 

you sum the cases where the trustee tr1 is the trustee 

with the highest trust value and this amount should 

be higher in the first trace compared to the second. 

P1  1, 2:TRACE, tr1:TRUSTEE, b1, b2:REAL 

[ same_experience_sequence(1, 2) & 

  state(1, 0) |= bias_for_trustee(tr1, b1) &  

  state(2, 0) |= bias_for_trustee(tr1, b2) & b1 > b2  & 

  tr2:TRUSTEE ≠ tr1 b3:REAL 

     [state(1, 0) |= bias_for_trustee(tr2, b3) & 

      state(2, 0) |= bias_for_trustee(tr2, b3) ]  
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  [ 
t:TIME  case(highest_trust_value(1, t, tr1), 1, 0) ≥ 

    
t:TIME  case(highest_trust_value(2, t, tr1), 1, 0) ] ] 

Here the same experience sequence is simply a 

property expressing that the experience values in 

both traces should be the same: 

same_experience_sequence(1:TRACE, 2:TRACE,)   

t:TIME, tr:TRUSTEE, v:REAL 

[ state(1, t) |= objective_experience_value(tr, v)     

state(2, t) |= objective_experience_value(tr, v) ] 

 

In the formalisation of the predicate indicating the 

highest trust value which is used in P1 the trust value 

for the trustee considered is bound by the -

quantifier. For this value it is then checked whether 

for all other trustees and trust values encountered no 

higher value than the value for trustee tr1 is 

encountered. 
 

highest_trust_value(:TRACE, t:TIME, tr1:TRUSTEE)   

v1:REAL 

[ state(, t) |= trust_value(tr1, v1)   

  tr2:TRUSTEE ≠ tr1, v2:REAL  

[ state(, t) |= trust_value(tr2, v2)    v2 < v1 ] ] 

The second property expresses that the trust level 

itself will be higher in the case of a more positive 

bias. 

P2: Trust comparison 

Trustees for which an agent has a more positive bias have a 

higher trust value compared to a trace in which the agent 

has a lower bias with respect to the trustee (given that the 

experiences are equal as well as the biases for the other 

trustees). 

 

The formalization of this property is very similar to 

P1, except that now a comparison is made between 

the trust values themselves. 

P2  1, 2:TRACE, tr1:TRUSTEE, b1, b2:REAL 

[ same_experience_sequence(1, 2) & 

    state(1, 0) |= bias_for_trustee(tr1, b1) &  

    state(2, 0) |= bias_for_trustee(tr1, b2) & b1 > b2 & 

   tr2:TRUSTEE ≠ tr1 b3:REAL 

         [ state(1, 0) |= bias_for_trustee(tr2, b3) & 

           state(2, 0) |= bias_for_trustee(tr2, b3) ]   

    t:TIME, tv1, tv2:REAL 

    [ state(1, t) |= trust_value(tr1, tv1) &  

      state(2, t) |= trust_value(tr1, tv2) ]  tv1 ≥ tv2    ] 

In order to facilitate the addition of bias to existing 

models, a translation scheme has been proposed to 

translate objective experiences into subjective 

experiences (i.e., experiences coloured by the bias). 

In case of a more positive bias, the biased 

experiences will be at least as high.  

 
P3: Experience comparison 

The objective experience provided by a trustee is translated 

into a higher subjective experience for trustees for which 

the agent has a higher bias (given the same experience 

sequence). 

 

The formalization of this property takes the first part 

which is by now well-known from P1 and P2 as n 

antecedent and checks to see whether the subjective 

experiences are indeed at least as high for the trace in 

which a higher bias is encountered. 

 
P3  1, 2:TRACE, tr:TRUSTEE, b1, b2:REAL 

[ [  same_experience_sequence(1, 2) &  

    state(1, 0) |= bias_for_trustee(tr, b1) &  

    state(2, 0) |= bias_for_trustee(tr, b2) & b1 > b2]  

   t:TIME, ev1, ev2:REAL 

   [ [ state(1, t) |= subjective_experience_value(tr, ev1) &  

       state(2, t) |= subjective_experience_value(tr, ev2) ]  

        ev1 ≥ ev2 ] ] 

 

Finally, in some of the bias model, trust is explicitly 

considered to colour the experiences. In case the trust 

level is higher, the same objective experience gets an 

even more positive value. 

 
P4: Influence of trust upon experience 

If the trust level for a certain trustee at time point t is higher 

than the trust level at another time point t’, whereas the 

objective experience is equal and not on the boundary of 

the scale (i.e. 0 or 1), then the subjective experience will be 

higher at time point t. 

 

The formalization of this property is a bit more 

complicated. First, the property binds the trust value 

at a time point at time point t for a certain trustee as 

well as the objective experience. Hereby, a check is 

performed to make sure the objective experience is 

neither 0 nor 1 as this would sometimes make it 

impossible to have a higher subjective value. Given 

that this is the case, and given that the objective 

experience is the same at another time point t’ at 

which the trust value is lower compared to the trust 

value at time t, this means that the subjective value at 

time t must be higher. 

 
P4  :TRACE, t, t’:TIME, tr:TRUSTEE,  

tv1, tv2, ov, sv1, sv2:REAL 

 [ state(, t) |= trust_value(tr, tv1) &  
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   state(, t) |= objective_experience_value(tr, ov) & 

   ov > 0 & ov < 1 & 

   state(, t) |= subjective_experience_value(tr, sv1) &   

   state(, t’) |= trust_value(tr, tv2) & tv1 > tv2  & 

   state(, t’) |= objective_experience_value(tr, ov) &  

   state(, t’) |= subjective_experience_value(tr, sv2) ]  

     sv1 > sv2 

 

4.2.2 Verification results for bias-based trust models  

Based upon the traces resulting from simulations of 

the trust models so-called traces have been generated. 

These traces are essentially logs of the simulations 

that indicate for each time point what states hold. 

These traces are loaded into the TTL Checker 

software which then expresses whether a property 

(i.e. P1-P4) holds for the trace (or a combination of 

traces) or not. The results of the verification are 

shown in Table 3. It can be seen that property P1 is 

satisfied for all bias models presented in this paper. 
When looking at the properties P2 and P3 however, 

the properties also hold for the various models that 

have been identified. Finally, property P4 is only 

satisfied for the models where trust is considered 

when forming the subjective experience, which 

makes sense as this property precisely, describes this 

influence. Properties P3 and P4 are actually not 

relevant for models LoET and LoT as they do not 

incorporate the notion of subjective experience, 

therefore the property is always satisfied (due to the 

fact that the antecedent of the implication never 

holds).  
 

Table 3. Result of verification 
 

 LiE LiET LiT LoE LoET LoT 

P1 satisfied satisfied satisfied satisfied satisfied satisfied 

P2 satisfied satisfied satisfied satisfied satisfied satisfied 

P3 satisfied satisfied satisfied satisfied satisfied satisfied 

P4 failed satisfied failed satisfied satisfied satisfied 

 

5. Mathematical Analysis of Bias-based Trust 

Models 

The models explored in this paper are adaptive with 

respect to the experiences of the agent. This means, 

for example, that when in a time period with very 

positive experiences, also trust will reach higher 

levels, and in periods with less positive experiences 

trust levels will go down. For very long periods of 

experiences of the same level, the trust level will 

reach some stable level, which is an equilibrium for 

the model for the given experience level. It gives a 

more depended insight in the model when it is known 

what the value of such an equilibrium is for a given 

experience level: the model will drive the trust level 

in the direction of that value. Moreover, the speed by 

which such a convergence process takes place also is 

useful information about a model. For these types of 

analyses the techniques used in the previous section 

are not practical to use, but mathematical techniques 

are available that can be used quite well. 

The properties addressed here by such 

mathematical techniques focus for a given point in 

time t in particular on criteria that determine whether 

due to a given experience the trust level will increase, 

decrease or will be in equilibrium. Moreover for the 

equilibria of the models, the behaviour near such 

equilibria is addressed: whether they are attracting or 

not, and how fast the convergence takes place. These 

properties are much more specific and limited 

compared to the wider types of properties addressed 

in Section 4, but the mathematical methods allow for 

more in depth results.  

First the general case is addressed; in Table 4 an 

overview of the results for the general case is 

summarised. Next, the analysis is made more specific 

for the case of linear functions; at the end of the 

section in Table 5 an overview of the results for these 

specific linear functions is presented. Note that the 

analysis is done for any given time point t, which is 

sometimes indicated as an argument, but will 

sometimes be left out to get expressions more 

transparent. 

5.1 Mathematical analysis of trust models with 

biased experience 

Recall that for the models that express the bias solely 

based upon the experience, the following difference 

equation is used. 

 

𝑇 𝑡 + 𝛥𝑡 = 𝑇 𝑡 + 𝛾  𝑓 𝐸 𝑡  − 𝑇 𝑡  𝛥𝑡 

 

where it is assumed that  > 0. Note that from the 

equation above it immediately follows: 

 

𝑇 𝑡 + 𝛥𝑡 = 𝑇 𝑡 ↔ 𝑓 𝐸 𝑡  − 𝑇 𝑡 = 0 

𝑇 𝑡 + 𝛥𝑡 > 𝑇 𝑡 ↔ 𝑓 𝐸 𝑡  − 𝑇 𝑡 > 0 

𝑇 𝑡 + 𝛥𝑡 < 𝑇 𝑡 ↔ 𝑓 𝐸 𝑡  − 𝑇 𝑡 < 0 

 

So, in this case the following criteria can be obtained 

for trust models with biased experiences: 
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Equilibrium, increasing and decreasing: 

trust models with biased experiences 

(a) T is in equilibrium for a given E  if and only if  
𝑓(𝐸)  =  𝑇 

(b) T is increasing if and only if  𝑓(𝐸)  >  𝑇 

(c) T is decreasing if and only if  𝑓(𝐸)  <  𝑇 
 

For example, (b) shows a criterion for an experience 

to let the trust level increase. If the trust already has 

some level T, it can only increase when an 

experience with level E at least satisfying 𝑓(𝐸)  >  𝑇  

occurs; otherwise trust will decrease or stay the same. 

Another way to use this is to determine directly to 

which equilibrium trust can go if a given experience 

level E is constantly offered; according to criterion 

(a) this equilibrium level for trust is f(E). 

Furthermore, from the monotonicity criteria above it 

can be derived in the following manner that the 

equilibrium is always attracting. Suppose Teq is an 

equilibrium for E, and 𝑇 < 𝑇𝑒𝑞 ; this implies  

 

𝑇 < 𝑇𝑒𝑞  = 𝑓(𝐸) 

 

and therefore T is increasing for the given E by the 

criterion (b) above. Similarly, when 𝑇 > 𝑇𝑒𝑞  for the 

given E it is found that T is decreasing by criterion 

(c). This proves that the process will always converge 

to the equilibrium, independent of the function f. This 

will also be confirmed by the analysis of the 

behaviour around the equilibrium below. 

 

Determining the behaviour around an equilibrium 

Independent of the precise form of the function f  

(and hence also independent of the bias parameter ), 

the behaviour around an equilibrium for a given 

constant experience E can be found here as follows. 

Write 𝑇(𝑡)  =  𝑇𝑒𝑞 + (𝑡), with (𝑡) the deviation of T 

from the equilibrium Teq for which it holds 𝑓 𝐸 =
𝑇𝑒𝑞 . 

 

𝑇 𝑡 + 𝛥𝑡 =  𝑇 𝑡 +  𝛾  𝑓 𝐸 –  𝑇 𝑡  𝛥𝑡 

𝑇𝑒𝑞 +  𝑡 + 𝛥𝑡 = 𝑇𝑒𝑞 +  𝑡 

+ 𝛾  𝑓 𝐸 –  𝑇𝑒𝑞 +  𝑡   𝛥𝑡 

 𝑡 + 𝛥𝑡 = (𝑡) + 𝛾 (𝑓(𝐸) − 𝑇𝑒𝑞 − (𝑡))𝛥𝑡  

 𝑡 + 𝛥𝑡 =  𝑡 − 𝛾 (𝑡) 𝛥𝑡  
𝑑 𝑡 

𝑑𝑡
=– 𝛾(𝑡) 

 

As a differential equation this can be solved 

analytically using an exponential function: 

 
 𝑡 =  0  𝑒− 𝒕  
 

This shows that the speed of convergence directly 

relates to parameter , and the convergence rate 

defined as reduction factor of the deviation per time 

unit is  

 
𝑐𝑟 =  𝑒− 
 

This is independent of , or the function f. More 

specifically, since  > 0, the convergence rate is 

always < 1; from this it follows that the equilibrium 

is always attracting. 

This shows that the speed by which trust adapts to 

a certain experience level is independent of the 

specific function f and bias parameter ; it is higher 

when  is higher and lower when  is lower. 

5.2 Mathematical analysis of trust models with 

biased experience also affected by trust 

For the models that express the bias based both upon 

the experience and the current trust level, the 

following difference equation was used: 

 

𝑇 𝑡 + 𝛥𝑡 = 𝑇 𝑡 + 𝛾 𝑓 𝐸 𝑡 , 𝑇 𝑡  𝛥𝑡                           
  

with  > 0. In a similar manner as above the 

following criteria are obtained: 

 

Equilibrium, increasing and decreasing: 

biased experience also affected by trust 

(a) T is in equilibrium for a given E  if and only if  
𝑓 𝐸, 𝑇 = 0 

(b) T  is increasing if and only if  𝑓 𝐸, 𝑇 > 0 

(c) T  is decreasing if and only if  𝑓 𝐸, 𝑇 < 0 

 

This again shows a criterion, for example, for an 

experience to let the trust level increase. If the trust 

already has some level T, it can only increase when 

an experience with level E at time t at least satisfying 

𝑓 𝐸, 𝑇 > 0 is obtained; otherwise trust will decrease 

or stay the same.  

Furthermore, some criterion on the function f  can 

be found in order that the equilibrium  Teq for E is 

attracting. Attracting means that if T is close to Teq 

with T < Teq, then for the given E it should be the 

case that T increases, which according to the above is 

equivalent with f(E, T) > 0. So, starting from T = Teq 

with  f(E, Teq) = 0, when T is taken lower, the value of 

f(E, T) has to become higher: 
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𝑇 < 𝑇𝑒𝑞 𝑓 𝐸, 𝑇 > 𝑓 𝐸, 𝑇𝑒𝑞    

 

This is equivalent with the criterion that in (E, Teq) the 

function f is decreasing in its second argument: 

𝜕𝑓 𝜕𝑇 𝐸, 𝑇𝑒𝑞  < 0 . Below this will be confirmed 

from the analysis of the behaviour around an 

equilibrium. This shows that not all functions f will 

provide the property that the trust levels converge to 

such an equilibrium value. For a choice to be made 

for some function f this has to be considered. Below 

it will be shown that for the choices made in the 

current paper this criterion is always fulfilled. 

 

Determining the behaviour around an equilibrium 

Depending on the form of the function f and also on 

the bias parameter , the behaviour around an 

equilibrium for a given constant experience E can be 

found as follows. Write 𝑇 𝑡 = 𝑇𝑒𝑞  + (𝑡), with (t) 

the deviation from the equilibrium Teq for which it 

holds 𝑓 𝐸, 𝑇𝑒𝑞 = 0 . For f the first-order Taylor 

approximation around Teq in its second argument is 

used, where 𝜕𝑓/𝜕𝑇 denotes the partial derivative of f 
with respect to its second argument T: 

 

𝑓 𝐸, 𝑇 = 𝑓 𝐸, 𝑇𝑒𝑞 + 𝜕𝑓 𝜕𝑇(𝐸, 𝑇𝑒𝑞 )   𝑇 − 𝑇𝑒𝑞  

 

Using this it holds 

 

𝑓  𝐸, 𝑇𝑒𝑞  +  𝑡  = 𝑓 𝐸, 𝑇𝑒𝑞 + 𝜕𝑓 𝑇(𝐸, 𝑇𝑒𝑞 ) (𝑡)  

+ 𝜕𝑓 𝑇(𝐸, 𝑇𝑒𝑞 ) (𝑡)  

𝑓  𝐸, 𝑇𝑒𝑞  +  𝑡  = 𝜕𝑓 𝜕𝑇(𝐸, 𝑇𝑒𝑞 )  (𝑡) 

 

Then the following is obtained: 
 

𝑇 𝑡 + 𝛥𝑡 = 𝑇 𝑡 + 𝛾   𝑓 𝐸, 𝑇 𝑡   𝛥𝑡                      

𝑇𝑒𝑞 +  𝑡 + 𝛥𝑡 = 𝑇𝑒𝑞 +  𝑡 + 𝛾𝑓  𝐸, 𝑇𝑒𝑞 +  𝑡  𝛥𝑡 

 𝑡 + 𝛥𝑡 =  𝑡 + 𝛾 𝜕𝑓 𝜕𝑇 𝐸, 𝑇𝑒𝑞    𝑡 𝛥𝑡 

𝑑(𝑡) 𝑑𝑡 = 𝛾  𝜕𝑓 𝜕𝑇 𝐸, 𝑇𝑒𝑞    𝑡   

 

As a differential equation this can be solved 

analytically using an exponential function: 

 

 𝑡 =  0  𝑒−𝛾  𝜕𝑓 𝜕𝑇 𝐸,𝑇𝑒𝑞    𝑡   
 

The convergence rate is defined as reduction factor of 

the deviation per time unit; this is 𝑒−𝛾  𝜕𝑓 𝜕𝑇 𝐸,𝑇𝑒𝑞    . 

This provides a condition on when an equilibrium is 

attracting, namely 𝜕𝑓 𝜕𝑇 𝐸, 𝑇𝑒𝑞  < 0. Note that in this 

case the convergence speed does not only depend on 

 but also on f, which in principle relates to the bias 

. This speed is higher when  is higher, but also 

when 𝜕𝑓 𝜕𝑇 𝐸, 𝑇𝑒𝑞   is more negative. 

5.3 Mathematical analysis of trust models with bias 

solely determined by current trust 

For the models that express the bias based only upon 

the current trust level, the following difference 

equation was used: 

 

𝑇(𝑡 +  𝛥𝑡)  =  𝑇(𝑡)  +  𝛾 (𝐸(𝑡) –  𝑓(𝑇(𝑡)) 𝛥𝑡  
          

where  > 0. Similarly the following criteria are 

found: 

 

Equilibrium, increasing and decreasing: 

bias solely determined by current trust 

(a) T is in equilibrium for a given E  if and only if  
𝐸 = 𝑓(𝑇)  

(b) T is increasing if and only if  𝐸 > 𝑓(𝑇) 

(c) T is decreasing if and only if  𝐸 < 𝑓(𝑇) 

 

Like before, this shows a criterion, for example, for 

an experience to let the trust level increase. If the 

trust already has some level T, it can only increase 

when an experience with level E at least satisfying 

𝐸 > 𝑓(𝑇) is obtained; otherwise trust will decrease or 

stay the same. Moreover, a criterion on the function f  
can be found in order that the equilibrium  𝑇𝑒𝑞  for E 

is attracting. As before note that attracting means that 

if T is close to with 𝑇 < 𝑇𝑒𝑞 , then for the given E it 

should be the case that T increases, which according 

to criterion (b) above is equivalent with 𝑓(𝑇) < 𝐸  . 

So, starting from 𝑇 =  𝑇𝑒𝑞  with  𝐸 = 𝑓(𝑇𝑒𝑞 ), when T is 

taken lower, the value of f(T) becomes lower: 

 

𝑇 < 𝑇𝑒𝑞   𝑓 𝑇 < 𝑓(𝑇𝑒𝑞)   

 

This means that in 𝑇𝑒𝑞 the function f has to be 

increasing: 𝑑𝑓 𝑑𝑇(𝑇𝑒𝑞 ) > 0. Below, this criterion for 

being attracting will be confirmed when the 

behaviour around an equilibrium is analysed. This 

shows again that not all functions f will provide the 

property that the trust levels converge to an 

equilibrium value. For a choice to be made for some 

function f  this criterion 𝑑𝑓 𝑑𝑇(𝑇𝑒𝑞 ) > 0  has to be 

taken into account. Below it will be shown that for 

the choices made in the current paper this criterion is 

always fulfilled. 
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Determining the behaviour around an equilibrium 
Again, depending on the form of the function f and 

also on the bias parameter , the behaviour around an 

equilibrium for a given constant experience E can be 

found as follows. Write 𝑇 𝑡 = 𝑇𝑒𝑞  + (𝑡), with (t) 

the deviation from the equilibrium Teq for which it 

holds 𝐸 = 𝑓(𝑇𝑒𝑞 ) . For f the first-order Taylor 

approximation around Teq is used: 

 

𝑓 𝑇 =  𝑓 𝑇𝑒𝑞 + 𝑑𝑓 𝑑𝑇 𝑇𝑒𝑞   𝑇 −  𝑇𝑒𝑞  

 

Using this it is obtained: 

 

𝑇(𝑡 + 𝛥𝑡)  =  𝑇(𝑡)  +  𝛾  𝐸 −  𝑓 𝑇 𝑡   𝛥𝑡  

𝑇𝑒𝑞 +  𝑡 + 𝛥𝑡 = 𝑇𝑒𝑞 +  𝑡 + 𝛾  𝐸 − 𝑓  𝑇𝑒𝑞 +

 + 𝑡   𝛥𝑡     

 𝑡 +  𝛥𝑡 = (𝑡)  +  𝛾  𝐸 − 𝑓(𝑇𝑒𝑞 + (𝑡))  𝛥𝑡            

 𝑡 + 𝛥𝑡 =  𝑡 + 𝛾  𝐸– 𝑓 𝑇𝑒𝑞 

−  𝑑𝑓 𝑑𝑇 𝑇𝑒𝑞    𝑡  𝛥𝑡 

 𝑡 + 𝛥𝑡 =  𝑡 − 𝛾 𝑑𝑓 𝑑𝑇 𝑇𝑒𝑞    𝑡 𝛥𝑡 

𝑑 𝑡 𝑑𝑡 =– 𝛾 𝑑𝑓 𝑑𝑇 𝑇𝑒𝑞    𝑡   

 

As a differential equation this can be solved 

analytically using an exponential function: 

  𝑡 =    0 𝑒−𝛾 𝑑𝑓 𝑑𝑇 𝑇𝑒𝑞    𝑡   
 

This shows that the speed of convergence does not 

only relate to parameter , but also to 𝑑𝑓/𝑑𝑇 𝑇𝑒𝑞  

which in principle relates to the bias . The 

convergence rate defined as reduction factor of the 

deviation per time unit is  

 

 𝑐𝑟 = 𝑒−𝛾  𝑑𝑓 𝑑𝑇 𝑇𝑒𝑞      
 
So, also in this case the convergence speed does not 

only depend on  but also on f, which in principle 

relates to the bias . This speed is higher when  is 

higher, but also when 𝑑𝑓/𝑑𝑇 𝑇𝑒𝑞  is higher. 

 

Table 4. Results of the mathematical analysis for the general case 

bias depends on increasing/decreasing 
equilibrium 

value 
convergence rate attracting 

only on experience 𝑓(𝐸) > 𝑇     ,     𝑓(𝐸) < 𝑇 𝑓(𝐸) = 𝑇𝑒𝑞 𝑒− always 

on experience and 

trust 
𝑓(𝐸, 𝑇) > 0  ,   𝑓(𝐸, 𝑇) < 0 𝑓(𝐸,𝑇𝑒𝑞) = 0 𝑒𝛾  𝜕𝑓 𝜕𝑇 𝐸,𝑇𝑒𝑞     

𝜕𝑓 𝜕𝑇 𝐸, 𝑇𝑒𝑞   < 0 

only on trust 𝐸 > 𝑓(𝑇)     ,     𝐸 < 𝑓(𝑇) 𝐸 = 𝑓(𝑇𝑒𝑞) 𝑒−𝛾  𝑑𝑓 𝑑𝑇 𝑇𝑒𝑞     𝑑𝑓 𝑑𝑇 𝑇𝑒𝑞   >0  

 

5.4 Mathematical analysis of the example biased 

trust models for the three types  

In this section, for each of the three general types of 

biased trust models analysed above, it will be 

investigated how the criteria can be formulated more 

specifically for the linear functions used in the 

current paper as instances for the function f: LiE, 

LiET, and LiT, 

 

5.4.1 More specific analysis for the linear case of 

bias only depending on experience (LiE) 

 

For the first case the following linear function was 

addressed (LiE):  

 
𝑓 𝐸 = 𝐸 +  2𝛽 − 1  1 − 𝐸        when 𝛽 ≥ 0.5 
𝑓 𝐸 = 2𝛽𝐸                                       when 𝛽 ≤ 0.5 

 

Case β ≥ 0.5  

 

Criterion for increasing for LiE with β ≥ 0.5 
𝐸 + (2𝛽 − 1)(1 − 𝐸) > 𝑇  
𝐸 +  2𝛽 − 1 −  2𝛽 − 1 𝐸 > 𝑇  
2 1 −  𝐸 +  2𝛽 − 1 > 𝑇 
2 1 −  𝐸 > 𝑇 − (2𝛽 − 1)   

𝐸 >  𝑇 𝑡 − (2𝛽 − 1) / 2 1 −    

𝐸 >  𝑇 𝑡 − 1 − (2𝛽 − 2)  2(1 − )   

𝐸 > (𝑇(𝑡)  − 1)  2(1 − )   −  2 𝛽 − 1  / 2 1 −    

𝐸 > 1 − ½ (1 −  𝑇)/(1 − )  
 

Criterion for decreasing for LiE with β ≥ 0.5 

𝐸  <  1 –  ½ (1 −  𝑇)/(1 − )  
 

Criterion for equilibrium for LiE with β ≥ 0.5 
𝐸 = 1 − ½ (1 −  𝑇)/(1 − ) 
𝐸 1 −  =  1 −  − ½ (1 −  𝑇)  
½  1 −  𝑇 =  1 −  − 𝐸 (1 − ) 
1 −  𝑇 = 2 1 −  − 2𝐸 (1 − ) 
𝑇 = 1 − 2 (1 − )(1 −  𝐸) 
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Note that for  = 0.5 (no bias) the criterion for an 

equilibrium is E = T, what is to be expected. For  = 
0.75, the criterion is  

 
𝐸 = 1 − ½ (1 −  𝑇)/0.25 

𝐸 = 1 − 2 1 − 𝑇  
𝐸 = 1 − 2 (1 −  𝑇) 

𝐸 = 2𝑇 −  1 
 

Note that for lower values of T this can provide a 

negative number. However, as the experience cannot 

be lower than 0, this implies that for such values of T 

no equilibrium occurs. For  = 0.875, the criterion is  

 
𝐸 = 1 –  ½ (1 −  𝑇)/0.125  
𝐸 = 1 –  4 (1 −  𝑇)   
𝐸 =  4𝑇 −  3 
 

For  approaching 1, the criterion always becomes a 

negative number (implying increase), unless T = 1; 

this implies that for this value of  no equilibrium 

occurs except for T =1 and any value for E. 

 

Behaviour around the equilibrium for LiE with β 

≥ 0.5 

For this case the behaviour around the equilibrium 

does not depend on the specific form of the function 

f. The convergence rate is: 𝑐𝑟 =  𝑒− , which is 

independent, for example, of . As  > 0, the 

equilibrium is always attracting. 

 

Case β ≤ 0.5  

    

Criterion for increasing for LiE with 𝜷 ≤ 𝟎. 𝟓 
2𝛽𝐸 > 𝑇 
𝐸 > ½ 𝑇/𝛽 
 
Criterion for decreasing for LiE with 𝜷 ≤ 𝟎. 𝟓 
𝐸 < ½ 𝑇/𝛽 
 
Criterion for equilibrium for LiE with 𝜷 ≤ 𝟎. 𝟓 
𝐸 = ½𝑇/𝛽 
𝑇 = 2𝛽𝐸 
 

Behaviour around the equilibrium for LiE with 

𝜷 ≤ 𝟎. 𝟓 

For this case the behaviour around the equilibrium 

does not depend on the specific form of the function 

f. The convergence rate is: 𝑐𝑟 =  𝑒− , which is 

independent, for example, of  or E. As  > 0, the 

equilibrium is always attracting. 

 

5.4.2 More specific analysis for the linear case of 

bias depending on both experience and trust (LiET) 

 

For the second case the following linear function was 

addressed (LiET):  

 

 𝑓 𝐸, 𝑇 = 𝛽 1 −  1 − 𝐸  1 − 𝑇  +  1 –  𝛽 𝐸 𝑇 –  𝑇 

 

For the linear example the inequalities and equation 

can be explicitly solved as follows. 

 

Criterion for increasing for LiET  

𝛽  1 −  1 − 𝐸  1 − 𝑇  +  1 − 𝛽 𝐸𝑇 − 𝑇 >  0 

𝛽  1 −  1 − 𝑇 + 𝐸  1 − 𝑇  +  1 − 𝛽 𝐸𝑇 − 𝑇 >  0 

𝛽 𝑇 +  𝐸 𝛽  (1 –  𝑇)  +   1 –  𝛽 𝐸𝑇 –  𝑇 >  0 
𝐸   𝛽   1 –  𝑇 +   1 –  𝛽 𝑇 >   1 −  𝑇 
𝐸  (𝛽 –  𝑇)  +  𝑇 –  𝛽𝑇 )  >  (1 − ) 𝑇 

𝐸  𝛽 +  1 − 2 𝑇 𝑡  >   1 −  𝑇 

𝐸  >   (1 − ) 𝑇 (1 − ) 𝑇(𝑡)  𝛽 +  (1 − 2)𝑇      
 

Criterion for decreasing for LiET 
𝐸 < (1 − ) 𝑇  𝛽 +  (1 − 2)𝑇      
 

Criterion for equilibrium for LiET 
𝐸 = (1 − ) 𝑇  𝛽 + (1 − 2)𝑇    
𝐸 𝛽 +  1 − 2 𝑇 = (1 − ) 𝑇  
𝐸𝛽 +  1 − 2 𝐸𝑇 = (1 − ) 𝑇  
 1 −  𝑇 −  1 − 2 𝐸𝑇 = 𝐸 𝛽   

  1 −  −  1 − 2 𝐸 𝑇 = 𝐸 𝛽   

𝑇 = 𝐸𝛽 /  1 −  −  1 − 2 𝐸 𝑡      

 

Behaviour around the equilibrium for LiET 

For the specific linear function f used above, it holds: 

𝜕𝑓

𝜕𝑇 𝐸, 𝑇 
=

𝜕 𝛽 1 −  1 − 𝐸  1 − 𝑇  +  1 − 𝛽 𝐸𝑇 − 𝑇 

𝜕𝑇 𝐸, 𝑇 
  

= 𝛽 1 − 𝐸 +  1 − 𝛽 𝐸 − 1  
 

Using this, for the linear case it is obtained: 

 𝑡 = (0) 𝑒𝛾  𝛽 1−𝐸 + 1−𝛽 𝐸−1  
 

and the convergence rate is 𝑒𝛾  𝛽 1−𝐸 + 1−𝛽 𝐸−1 . This 

shows that for this case the speed of convergence not 

only relates to parameter , but also to  and E. More 

specifically, the convergence rate is < 1 if and only if  

 
𝛽  1 − 𝐸 +  1 − 𝛽 𝐸 − 1 < 0 
 

This is a condition for an equilibrium to be attracting. 

It can be rewritten into an explicit criterion for E as 

follows: 

𝛽 − 𝛽𝐸 + 𝐸 − 𝛽𝐸 − 1 < 0 
1 − 𝛽 − 𝐸 + 𝛽𝐸 + 𝛽𝐸 > 0 
 1 − 𝛽   1 − 𝐸  + 𝛽𝐸 > 0 
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This is always the case. 
 
5.4.3 More specific analysis for the case of bias 

depending only on trust (LiT) 

For the third case the following function was 

addressed (LiT):  

𝑓 𝑇 = 𝑇 − (1 − 𝑇) (2𝛽 − 1)(1 − 𝑇)  when β  ≥  0.5 
𝑓 𝑇 = 𝑇 −  1 − 𝑇  2𝛽 − 1 𝑇 when β ≤ 0.5 

This can be analysed more specifically as follows 

 

Case β  ≥  0.5 
 

Criterion for increasing for LiT with  ≥  0.5 
𝐸 >  𝑓(𝑇)  =  𝑇 − (1– 𝑇)  (2𝛽 – 1) (1 –  𝑇) 
 

Criterion for decreasing for LiT with  ≥  0.5 
𝐸 <  𝑓(𝑇)  =  𝑇 − (1– 𝑇)  (2𝛽 – 1) (1 –  𝑇) 
 
Criterion for equilibrium for LiT with  ≥  0.5 
𝐸 = 𝑓 𝑇 = 𝑇 −  1 − 𝑇  2𝛽 − 1 (1 − 𝑇) 
𝐸 = 𝑇 −  2𝛽 − 1 (𝑇2 − 2𝑇 + 1) 
𝐸 = 𝑇 −  2𝛽 − 1 𝑇2 + 2 2𝛽 − 1 𝑇 −  2𝛽 − 1  
𝐸 = − 2𝛽 − 1 𝑇2 +  4𝛽 − 1 𝑇 −  2𝛽 − 1  
 2𝛽 − 1 𝑇2 −  4𝛽 − 1 𝑇 +  2𝛽 − 1 + 𝐸 = 0 
 
For the special case that  = 0.5 (no bias) this latter 

criterion reduces to a linear equation -T + E = 0 with 

solution T = E. For the general case  > 0.5 the above 

expression is a quadratic equation in T with 

discriminant  

𝐷 = (4 − 1)2 − 4 2 − 1   2 − 1 + 𝐸  

=  162 − 8 + 1 − 4 42 − 4 + 1 − 4(2 − 1)𝐸 

= 162 − 8 + 1 − 162 + 16 − 4 − 4 2 − 1 𝐸 

= 8 − 3 − 4(2 − 1)𝐸 
= 8 − 3 − (8 − 4)𝐸 
= 8 1 − 𝐸  + 4𝐸 − 3 
 
From this expression for D, which is linear in both  

and  E, given that β ≥ 0.5 it can easily be seen that D  
is always ≥ 1: 

 

 for =0.5 it holds 𝐷 = 4 1 − 𝐸 + 4𝐸 − 3 = 1 

 for  = 1 it holds 𝐷 = 8 1 − 𝐸 + 4𝐸 − 3 =

5 − 4𝐸 ≥ 1 since E ≤ 1 

 

Alternatively, considering special values of E: 

 

 for E= 1 it holds D =  1 

 for E=0 it holds 𝐷 = 8− 3 ≥ 4–3 = 1  

since  ≥ 0.5 

 

Therefore D is positive and the quadratic equation has 

two solutions for T 

𝑇1,2 =   4 − 1 ±  𝐷  2 2− 1       

=   4− 1 ±   8 1 − 𝐸  + 4𝐸 − 3  2 2− 1     

Since D ≥ 1 for the highest solution T2 it holds 

𝑇2 ≥   4− 1 + 1  2 2− 1  = 4 (4− 2)    
= (4− 2) (4− 2) + 2 (4− 2)  

= 1 + 2 (4− 2) > 1 

Similarly, from D ≥ 1  it follows that for the lowest 

solution T1 (for the -) it holds 

𝑇1 ≤ ((4 − 1) − 1)/2(2𝛽 − 1) = (4− 2)/2(2𝛽 – 1) 
 

= 1 

Therefore the equilibrium Teq  for a given E is the 

lowest solution T1 

Teq =   
(4−1) − 𝐷 

2(2 (1)
  =  

 4−1 −  [8(1−𝐸)  + 4𝐸 −3] 

2(2 −1)
  ≤ 1 

This is a positive number since D ≤ (4-1) as can be 

seen from the initial expression  

𝐷 = (4 − 1)2 − 4 2 − 1   2 − 1 + 𝐸  

≤ (4 − 1)2 

 

Behaviour around the equilibrium for LiT with  
≥  0.5 

It holds 

 

𝑑𝑓 𝑑𝑇 𝑇 = 1 + 2 1 − 𝑇 (2 − 1)   

𝑑𝑓 𝑑𝑇 𝑇𝑒𝑞  = 1 + 2 1 − 𝑇𝑒𝑞  (2 − 1)  

Therefore for this case the convergence rate is 

𝑐𝑟 = 𝑒−𝛾 𝑑𝑓/𝒅𝑇(𝑇𝑒𝑞) = 𝑒−𝛾 1+2 1−𝑇𝑒𝑞  (2−1)  

This depends both on  and , and via Teq also on E.  

 

The criterion for the equilibrium being attracting is 

that 𝒅𝑓/𝒅𝑇(𝑇𝑒𝑞 ) > 0. This is equivalent to: 

1 + 2 1 − 𝑇𝑒𝑞   2 − 1 > 0 

 

As β ≥ 0.5, this is always the case. 

 

Case β ≤ 0.5  

 

Criterion for increasing for LiT with   ≤  0.5 
𝐸 > 𝑇 + (1 − 𝑇) (𝑇 − 2 𝛽 𝑇)  
=  2 1 −  𝑇 − 𝑇2(1 − 2 𝛽) 

 

Criterion for decreasing for LiT with   ≤  0.5 
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𝐸 < 𝑇 +  1 − 𝑇  𝑇 − 2 𝛽 𝑇   

= 2 1 −  𝑇 − 𝑇2 1 − 2 𝛽  
 

Criterion for equilibrium for LiT with   ≤  0.5 
𝐸 = 𝑇 + (1 − 𝑇) (𝑇 − 2 𝛽 𝑇)  
𝐸 = 2 1 −  𝑇 − 𝑇2(1 − 2 𝛽) 
 1 –  2𝛽 𝑇2 − 2 1 −  𝑇 + 𝐸 = 0 

This is a quadratic equation in T  with discriminant  

𝐷 = 4 1 −  2 − 4 (1 − 2𝛽) 𝐸 
Then  

𝑇1,2 =  (2(1 − )  ± 𝐷) 2 1 –  2𝛽     

=   1 −  ±  (1 − )2 − (1 –  2𝛽) 𝐸  / (1 –  2𝛽)  

Solutions for T require that D ≥ 0; this is equivalent 

to: 

 1 −  2 −  1 − 2 𝐸 ≥ 0 

 1 −  2 ≥  1 − 2 𝐸 

𝐸 ≤  1 −  2/ 1 − 2  
𝐸 ≤ 1 + 

2/ 1 − 2  

As  E ≤ 1 and 1 + 2/ 1 − 2 > 1, this is always 

fulfilled. The highest solution T2 is > 1 as can be seen 

from 

𝑇2

=   1 −  +    1 −  2 −  1 − 2 𝐸  (1 − 2)  

≥ (1 − ) / (1 − 2𝛽)  
= (1 − 2) / (1 − 2𝛽) +  / (1 − 2𝛽)  

= 1 +   /(1 − 2𝛽) > 1 
 

Therefore the equilibrium value Teq is the smallest 

solution T1 

 

𝑇𝑒𝑞 =   1 −  −    1 −  2 − (1 − 2) 𝐸  1 − 2   

 

As above it can be seen that this is a positive number.  

 

Behaviour around the equilibrium for LiT with   
≤  0.5 

It holds 

  
𝒅𝑓/𝒅𝑇(𝑇) = 1 − (1 − 𝑇) (2𝛽 − 1) + (2𝛽 − 1)𝑇 
=  1 −  2𝛽 − 1 + 2(2𝛽 − 1)𝑇 
=  2 1 −  + 2(2𝛽 − 1)𝑇     
 
𝒅𝑓/𝒅𝑇(𝑇𝑒𝑞 ) = 2(1 − ) +  2(2𝛽 − 1) 𝑇𝑒𝑞    

 

Therefore for this case the convergence rate is 

 

𝑐𝑟 = 𝑒−𝛾(𝑑𝑓/𝑑𝑇(𝑇𝑒𝑞)) = 𝑒−𝛾(2(1−) + 2(2𝛽−1) 𝑇𝑒𝑞 ) 
 

This depends both on  and , and via Teq also on E. 

The criterion for the equilibrium being attracting is 

that 𝑑𝑓/𝑑𝑇(𝑇𝑒𝑞 ) > 0. This is equivalent to: 

2 1 −  + 2 2𝛽 − 1 𝑇𝑒𝑞 > 0 

 

As β ≤ 0.5, this is always the case.

Table 5. Results of the mathematical analysis for the specific linear functions 

 bias 

depends on 
increasing/decreasing equilibrium value convergence rate Attracting 

LiE 

only on 
experience: 

 ≥ 0.5 

𝐸 > 1 − ½ (1 −  𝑇)/(1 − ) 
𝐸 < 1 − ½ (1 −  𝑇)/(1 − ) 

𝐸 = 1 − ½ (1 − 𝑇𝑒𝑞 )/(1 − ) 

𝑇𝑒𝑞 = 1 − 2 (1 − )(1 − 𝐸) 
𝑒−𝛾 Always 

only on 

experience: 

 ≤ 0.5 

𝐸 > ½ 𝑇/ 𝛽        
𝐸 < ½ 𝑇/ 𝛽 

𝐸 = ½ 𝑇𝑒𝑞/ 𝛽                

𝑇𝑒𝑞 = 2𝛽𝐸 𝑒−𝛾 Always 

LiET 

on 

experience 
and trust 

𝐸 > (1 − )𝑇/(𝛽 +  1 − 2 𝑇) 
𝐸 < (1 − )𝑇/(𝛽 +  1 − 2 𝑇) 

𝐸 = (1 − )𝑇𝑒𝑞/(𝛽 + (1 − 2)𝑇𝑒𝑞 ) 

𝑇𝑒𝑞 = 𝐸𝛽/( 1 −  −  1 − 2 𝐸)   

𝑒𝛾 𝛽 1−𝐸 + 1−𝛽 𝐸−1  

 
Always 

LiT 

only on 

trust: ≥0.5 

𝐸 > 𝑇 − (1 − 𝑇)(2𝛽 − 1)(1 − 𝑇) 
𝐸 < 𝑇 − (1 − 𝑇)(2𝛽 − 1)(1 − 𝑇) 

𝐸 = 𝑇𝑒𝑞 − (1 − 𝑇𝑒𝑞)(2𝛽 − 1)(1 − 𝑇𝑒𝑞 ) 

Teq = 
(4−1) − [8(1−𝐸)  + 4𝐸 −3] 

2(2𝛽  –1)  
 

𝑒
−𝛾 1+2 1−𝑇𝑒𝑞  2𝛽−1    

 

Always 

only on 

trust: ≤0.5 

𝐸 > 2 1 −  𝑇 − 𝑇2(1 − 2 𝛽) 
𝐸 < 2 1 −  𝑇 − 𝑇2(1 − 2 𝛽) 

𝐸 = 2 1 −  𝑇𝑒𝑞 − (𝑇𝑒𝑞)2(1 − 2𝛽) 

Teq = 
 1− − [ 1− 2−(1−2𝛽) 𝐸

1−2𝛽
 

𝑒
−𝛾 2 1−𝛽 −2 1−2𝛽 𝑇𝑒𝑞  

 

Always 
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6. Human-Based Trust Experiment 

In this section the human-based trust experiment is 

explained. In Section 6.1 the participants are 

described. In Section 6.2 an overview of the used 

experimental environment is given. Thereafter, the 

procedure of the experiment and data collection is 

explained in Sections 6.3.  

6.1  Participants 

Eighteen participants (eight male and ten female) 

with an average age of 23 (SD = 3.8) participated in 

the experiment as paid volunteers. Non-colour 

blinded participants were selected. All were 

experienced computer users, with an average of 16.2 

hours of computer usage each week (SD = 9.32). 

6.2  Task 

As the bias-based trust models are designed to work 

in situations in which humans have to decide to trust 

either one of multiple heterogeneous trustees, the 

experimental task used involved three different 

trustees, namely two human participants and a 

support system. The task was a classification task in 

which the two participants on two separate personal 

computers had to classify geographical areas 

according to specific criteria as areas that either 

needed to be attacked, helped or left alone by ground 

troops. The participants needed to base their 

classification on real-time computer generated video 

images that resembled video footage of real 

unmanned aerial vehicles (UAVs). On the camera 

images, multiple objects were shown. There were 

four kinds of objects: civilians, rebels, tanks and cars. 

The identification of the number of each of these 

object types was needed to perform the classification. 

Each object type had a score (either -2, -1, 0, 1 or 2, 

respectively) and the total score within an area had be 

determined. Based on this total score the participants 

could classify a geographical area (i.e., attack when 

above 2, help when below -2 or do nothing when in 

between). Participants had to classify two areas at the 

same time and in total 98 areas had to be classified. 

Both participants did the same areas with the same 

UAV video footage. 

During the time a UAV flew over an area, three 

phases occurred: The first phase was the advice 

phase. In this phase both participants and a 

supporting software agent gave an advice about the 

proper classification (attack, help, or do nothing). 

This means that there were three advices at the end of 

this phase. It was also possible for the participants to 

refrain from giving an advice, but this hardly 

occurred. The second phase was the reliance phase. 

In this phase the advices of both the participants and 

that of the supporting software agent were 

communicated to each participant. Based on these 

advices the participants had to indicate which advice, 

and therefore which of the three trustees (self, other 

or software agent), they trusted the most. Participants 

were instructed to maximize the number of correct 

classifications at both phases (i.e., advice and 

reliance phase). The third phase was the feedback 

phase, in which the correct answer was given to both 

participants. Based on this feedback the participants 

could update their internal trust models for each 

trustee (self, other, software agent). 

In Fig. 6 the interface of the task is shown. The 

map is divided in 10 x 10 areas. These boxes are the 

areas that were classified. The first UAV starts in the 

top left corner and the second one left in the middle. 

The UAVs fly a predefined route so participants do 

not have to pay attention to navigation. The camera 

footage of the upper UAV is positioned top right and 

the other one bottom right. 

The advice of the self, other and the software 

agent was communicated via dedicated boxes below 

the camera images. The advice to attack, help, or do 

nothing was communicated by red, green and yellow, 

respectively. On the overview screen on the left, 

feedback was communicated by the appearance of a 

green tick or a red cross. The reliance decision of the 

participant is also shown on the overview screen 

behind the feedback (feedback only shown in the 

feedback phase). The phase depicted in Figure 6 was 

the reliance phase before the participant indicated his 

reliance decision. 

6.3  Data Collection 

During the above described experiment, input and 

output were logged using a client-server application. 

The interface of this application is shown in Fig. 7. 
Two other client machines, that were responsible for 
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Fig. 6. Interface of the task 

executing the task as described in the previous 

subsection, were able to connect via a local area 

network to the server, which was responsible for 

logging all data and communication between the 

clients. The interface shown in Fig. 7 could be used 

to set the client’s IP-addresses and ports, as well as 

several experimental settings, such as how to log the 

data. In total the experiment lasted approximately 15 

minutes per participant. 

Experienced performance feedback of each 

trustee and reliance decisions of each participant 

were logged in temporal order for later analysis. 

During the feedback phase the given feedback was 

translated to a penalty of either 0, 0.5 or 1, 

representing a good, neutral or poor experience of 

performance, respectively. This directly maps to the 

value (Ei(t)+1) / 2 in the trust models. During the 

reliance phase the reliance decisions were translated 

to either 0 or 1 for each trustee Si, which represented 

that one relied or did not rely on Si. 
 

Fig. 7. Interface of the application used for gathering validation 

data (Connect), for parameter adaptation (Tune) and validation of 

the trust models (Validate). 
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7. Validation of Bias-based Trust Models 

In this section validation process of the trust models 

described in section 2 are presented. In section 7.1 

parameter adaption technique is explained, 7.2 and 

7.3, explain the model validation process and results 

for bias-based trust models, respectively.  

7.1  Parameter Adaptation 

The data collection described in Section 6.3 was 

repeated twice on each group of two participants, 

called condition 1 and condition 2, respectively. The 

data from one of the conditions was used for 

parameter adaptation purposes for each model, and 

the data from the other condition for model 

validation (see Section 6.3). This process of 

parameter adaptation and validation was balanced 

over conditions, which means that condition 1 and 

condition 2 switch roles, so condition 1 is initially 

used for parameter adaptation and condition 2 for 

model validation, and thereafter condition 2 is used 

for parameter adaptation and condition 1 for model 

validation (i.e. cross-validation). Then the average 

was calculated of the two calculated validities, per 

participant, per model. This last value is called the 

accuracy of the models. The results are in the form of 

accuracies per trust model and their differences are 

detected using a repeated measures analysis of 

variance (ANOVA) and post-hoc Bonferroni t-tests. 

After the different models were tuned, the best fit 

model (with the maximum accuracy) is selected 

based on the maximum accuracy for the participant at 

hand. This was done because at the moment one does 

not know beforehand which bias type will be suitable 

for the specific participant. The results of the 

validation process are in the form of accuracies per 

trust model (unbiased model (UM), LiE, LiT, LiET, 

LoE, LoT, LoET and the best fit model (MAX)). 
Both the parameter adaptation and model 

validation procedure was done using the same 

application as was used for gathering the empirical 

data. The interface shown in Figure 7 could also be 

used to alter validation and adaptation settings, such 

as the granularity of the adaptation. 
The number of parameters of the models 

presented in Section 2 to be adapted for each model 

and each participant suggest that an exhaustive 

search as described in [6] for the optimal parameter 

values is feasible. This means that the entire 

parameter search space is explored to find a vector of 

parameter settings resulting in the maximum 

accuracy (i.e., the amount of overlap between the 

model’s predicted reliance decisions and the actual 

human reliance decisions) for each of the models and 

each participant. The corresponding code of the 

implemented exhaustive search method is shown in 

Algorithm 1. 

 
ALGORITHM 1: ES-PARAMETER-ADAPTATION(E, RH) 

1 δbest= ∞, X = 0 

2 for all parameters x in vector X do 

3    for all settings of x do  

4       δx= 0 

5       for all time points t do 

6      e = E(t), rM = RM(e, X), rH = RH(e) 

7      if rM not equal rH then 

8         δx= δx+1 

9      end if 

10         end for 

11   if δx < δbest then 

12      Xbest= X, δbest= δx 

13   end if 

14      end for 

15   end for 

16   return Xbest 

 

In this algorithm, E(t) is the set of experiences (i.e., 

performance feedback) at time point t for all trustees, 

RH(e) is the actual reliance decision the participant 

made (on either one of the trustees) given a certain 

experience e, RM(e,X) is the predicted reliance 

decision of the trust model M, given an experience e 

and candidate parameter vector X (reliance on either 

one of the trustees), X is the distance between the 

estimated and actual reliance decisions given a 

certain candidate parameter vector X, and δbest is the 

distance resulting from the best parameter vector Xbest 

found so far. The best parameter vector Xbest is 

returned when the algorithm finishes. This parameter 

adaptation procedure was implemented in Microsoft 

® C#.Net 2005 development environment. 

In order to compare the different bias-based trust 

models described in Section 2, the measurements of 

experienced performance feedback were used as 

input for the models (i.e. as experiences) and the 

output (predicted reliance decisions) of the models 

was compared with the actual reliance decisions of 

the participant as described in section 6. It is hereby 

assumed that the human always consults the most 

trusted trustee. The resulting set of parameters is the 

set with minimum error in the prediction of the 

reliance decisions for that specific participant. Hence, 

the relative overlap of the predicted and the actual 
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reliance decisions was a measure for the accuracy of 

the models. 

7.2 Computational Complexity 

As the models described in Section 2 have a different 

number of parameters the parameter tuning process 

took a different amount of time for each of the 

models. Assuming that S is the number of subjects, M 

number of model types (namely unbiased, linear and 

logistic), B number of bias types (using experience, 

trust, and experience and trust), P the number of 

parameters with α degree of precision of the 

parameters (in the range of 0 - 1), T the number of 

time steps, and N number of trustees, the complexity 

is then O (S.M.B.10
Pα

.T.N). This indicates that it is 

exponential in the number of parameters and their 

precision value. Models presented here have different 

number of parameter with different types of 

precisions. The baseline model has one parameter γ 

(with 0.01 precision), while linear models have four 

(γ, β1, β2, β3 with 0.01) where β1, β2, and β3 represent 

the bias of the subject towards each trustee and the 

logistic models have seven parameter (γ, τ1, τ2, τ3, σ1, 

σ2, and σ3, where γ and τ has precision 0.01 and σ has 

precision 1 within range 1 to 20).  

If the time required is calculated say for LoT for 

tuning one subject then it has S=1, M=1, B=1, P=7 

(4 parameters with precision 0.01, and 3 parameter 

with precision 1 and in range (1-20), T=100*3 (to 

calculate trust value at each time point, predict 

reliance decision and calculate distance from 

empirical data), and N=3 then it counts to 

1x1x1x10
4x2

x20
3
x3*10

2
x3=7.2x10

14
, which on 2.4 

MHz computer will take approx. 3.47 days. For a 

linear model it counts to 37.5 seconds. So to validate 

all seven models against one subject will take 10.41 

days. If all subjects are validated for all seven models 

in a serial fashion (one by one) on a machine having 

speed 2.4 MHz then it will cost 166.66 days to 

complete. Hence during the process of tuning two 

approaches are followed a) to decrease granularity of 

the parameters from 0.01 to 0.025 (for α, τ, β) and 1 

to 2 (for σ) and secondly to use DAS-4 [1] 

(distributed ASCI super computer version 4) which 

can distribute validation of each of the subject on 

separate machine in a distributed cluster. Hence 16 

machines on DAS-4 have been utilized for this 

purpose. On average these machines have provided 

0.31 MHz of computing power. These steps have 

speedup the process very much and the whole 

process took approximately 6.19 hours at DAS-4 

with these parameters. 

7.3 Validation Results 

From the data of 18 participants, two outliers have 

been removed, which leaves a data set of 16 

accuracies per model type (UM, LiE, LiT, LiET, 

LoE, LoT, LoET and MAX). 

The actual found tuned parameters per model 

type per participant are too numerous to show in the 

paper. Hence we only show the found accuracies. 

In Figure 8a the subjects are shown on the x-axis 

while the prediction accuracies of the models are 

presented on y-axis. Here it can be seen that the LiE 

and LoET variants are mostly on the upper bound of 

the prediction accuracy whereas the LiT, LiET, and 

LoT are on the lower bound. In Figure 8b the average 

accuracy of the models over the participant is shown. 

It can be seen that the LiE and LoET variant provide 

better predictions while the LiT, LiET, LoE, and LoT 

perform worse compared to the baseline model 

(UM). 

 
a) 

 
b) 

Fig. 8: a) prediction accuracy of models across subjects, b) average 

prediction accuracy of models for all subjects 
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In Fig. 9 the main effect of model type for 

accuracy for known data is shown. A repeated 

measures analysis of variance (ANOVA) showed a 

significant main effect (F(7, 105) =  61.04, p << 

.01). A post-hoc Bonferroni test showed that there is 

a significant difference between all biased model 

types and the unbiased model (UM), p << 0.01, for 

all tests.  For models UM, LiT, LiET and LoT a 

significantly higher accuracy was found for the best 

fit model (MAX), p << 0.01, for all tests. 

Finally, for unknown data, a paired t-test showed 

a significant improved accuracy of the best fit model 

(M=0.70, SD=0.16) compared to the unbiased model 

(M=0.66, SD=0.15), t(15)=3.13, p<<0.01. This 

means that at least one of the different biased models 

shows an increased capability to estimate trust of the 

tested participants, also for unknown data. 

 
Fig. 9. Main effect of model type on accuracy 

8. Discussion and Conclusions 

In this paper, approaches have been presented that 

allow for modelling biases in human trust dynamics. 

In order to come to models incorporating such 

approaches, an existing model [11], which is often 

applied (e.g., [17], [18], [19]), has been extended 

with additional constructs. A number of different 

variants have hereby been introduced:  
(1) a model that strictly places the bias on the experience 

obtained from the trustee  

(2) a model that combines the trust and experience and then 

applies the bias  

(3) a model that uses the previous trust value on which the bias 

is applied.  

Simulation results of the behaviour of each of the 

model have been shown, as well as a comparison of 

the behaviour of the models via the mutual model 

mirroring method presented in [9]. Furthermore, the 

resulting simulation traces have been formally 

analysed by means of the verification of formal 

desired properties and were shown to behave as 

expected. In addition a detailed mathematical 

analysis has been performed to investigate dynamic 

properties of bias-based trust models. The properties 

addressed include aspects such as when trust is 

increasing or decreasing, which equilibria are 

possible (i.e., T(t + Δ t) = T(t)), and how the 

behaviour of the models is near the equilibria, in 

particular whether they are attracting and what the 

rate of convergence to such an equilibrium is. The 

main goal of the research presented here is to model 

and validate human bias-based trust. Therefore, an 

extensive validation has taken place in which the 

bias-based trust models were used to describe and 

forecast human trust levels. In this paper, to tailor the 

model to a specific human, a simple parameter 

estimation technique has been used, but more 

complex estimation techniques could also be applied. 

The tuning technique used for the personalization of 

trust models was inspired by the techniques presented 

in [6]. The technique applied being exhaustive in 

nature consumes a lot of computation power. Hence, 

during the process of tuning two approaches are 

followed a) to decrease granularity of the parameters 

from and secondly to use DAS-4 [1] which can 

distribute validation of each of the subject on 

separate machine in a distributed cluster. Hence 16 

machines on DAS-4 have been utilized for this 

purpose. These steps have speedup the process 

significantly which approximately 6.19 hours at 

DAS-4 instead of 166 days on a personal computer.  

The validation study of bias-based trust models 

showed that for each participant at least one of the 

different biased models has an increased capability to 

estimate trust, also for unknown data. For known 

data (i.e., the models were tuned to it), all of the 

models are better compared to the tuned unbiased 

model. The latter means that if one is able to develop 

a kind of on-line tuning, the accuracies of the models 

would certainly benefit. The first means that the 

identification of personal characteristics might lead 

to an online form of the selection of the best fit 

model for unknown data, which on its turn leads to 

an improved accuracy. 

Within the domain of agent systems, quite some 

trust models have been developed, see e.g. [13], [14] 

for an overview. Although the focus of this paper has 

been on the design of bias-based trust models and 

validation of these models, other trust models can 
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also be validated using the experimental data 

obtained in combination with parameter estimation. 

This is part of future work. Furthermore, other 

parameter adaptation methods will be explored or 

extended for the purpose of real-time adaptation. In 

addition, a personal assistant software agent will be 

implemented that is able to monitor and balance the 

functional state of the human in a timely and 

knowledgeable manner. Also applications in different 

domains are explorable, such as the military and air 

traffic control domain. 

In future, given the approach presented in this 

paper, other models that represent human trust from 

the literature, for example, addressing trust in agents 

as teammates (see e.g. [13], [14], [3a]) could also be 

extended with the notion of human biases. 

Furthermore it could be investigated that how far 

these extensions improve the accuracy of those 

models. 
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