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Abstract. Trust dynamics can be modeled in relation 

to experiences. In this paper two models to represent 

human trust dynamics are introduced, namely a model 

on a cognitive level and a neural model. These models 

each include a number of parameters, providing the 

possibility to express certain relations between trustees. 

The behavior of each of the models is further analyzed 

by means of simulation experiments and formal 

verification techniques. Thereafter, both models have 

been compared to see whether they can produce 

patterns that are comparable. As each of the models 

has its own specific set of parameters, with values that 

depend on the type of person modeled, such a 

comparison is nontrivial. To address this, a special 

comparison approach is introduced, based on mutual 

mirroring of the models in each other. More 

specifically, for a given parameter values set for one 

model, by an automated parameter estimation 

procedure the most optimal values for the parameter 

values of the other model are determined in order to 

show the same behavior. Roughly spoken the results 

are that the models can mirror each other up to an 

accuracy of around 90%. 

 

Keywords: trust dynamics, cognitive, neural, 

comparison, parameter tuning. 

1. Introduction 

Nowadays, more and more ambient systems are being 

deployed to support humans in an effective way (Aarts, 

Harwig, and Schuurmans, 2001; Aarts, Collier, van 

Loenen, and Ruyter, 2003; Riva, Vatalaro, Davide, and 

Alcaniz, 2005). An example of such an ambient system 

is a personal agent that monitors the behaviour of a 

human executing certain complex tasks, and gives 

dedicated support for this. Such support may include 

advising the use of a particular information source, 

system or agent to enable proper execution of the task, 

or even involving such a system or agent pro-actively. 

In order for these personal agents to be accepted and 

useful, the personal agent should be well aware of the 

habits and preferences of the human. If a human for 

example for good reasons dislikes using a particular 

system or agent, and there are several alternatives 

available that are more preferred, the personal agent 

would not be supporting effectively if it would advise, 

or even pro-actively initiate, the disliked option. 

An aspect that plays a crucial role in giving such 

tailored advice is to represent the trust levels the 

human has for certain options. Knowing these trust 

values allows the personal assistant to reason about 

these levels, and give the best possible support that is 

in accordance with the habits and preferences of the 

human. Since there would be no problem in case there 

is only one way of supporting the human, the problem 

of selecting the right support method only occurs in 

case of substitutable options. Therefore, a notion of 

relative trust in these options seems more realistic than 

having a separate independent trust value for each of 

these options. For instance, if three systems or agents 

can contribute X, and two of them perform bad, 

whereas the third performs pretty bad as well, but 

somewhat better in than the others, trust in that third 

option may still be a relatively high since in the context 

of the other options it is the best alternative. The 

existing trust models do however not explicitly handle 

such relative trust notions (see e.g. Falcone and 

Castelfranchi, 2004; Jonker and Treur, 1999; Marx and 

Treur). 

In this paper, a cognitive and a neural model are 

presented that address the dynamics of trust, including 

the aforementioned notion of relative trust and 

particular other personality characteristics. Both 

models are evaluated using simulation experiments and 

formal verification techniques. 

The first model, representing trust on a cognitive 

level, takes into account two main functional properties 

of trust states, which define the causal or functional 

role of a trust state as cognitive state, as put forward in 

(Jonker and Treur, 2003): 



(1) A trust state results from accumulation of 

experiences over time 

(2) Trust states affect decision making by choosing 

more trusted options above less trusted options 

The second model of trust dynamics is based on 

neurological principles. In this model, theories on the 

interaction between affective and cognitive states (see 

e.g., Eich, Kihlstrom, Bower, Forgas, and Niedenthal, , 

2000; Forgas, Laham, and Vargas, 2005; Forgas, 

Goldenberg, and Unkelbach, 2009; Niedenthal, 2007; 

Schooler and Eich, 2000; Winkielman, Niedenthal, and 

Oberman, 2009) are modeled on a neurological level as 

well by using theories on the embodiment of emotions 

as described, for example, in (Winkielman, Niedenthal, 

and Oberman, 2009; Damasio, 1994; Damasio, 1996; 

Damasio, 1999; Damasio, 2003), it is described how 

trust dynamics relates to experiences with (external) 

sources, both from a cognitive and affective 

perspective. More specifically, in accordance with, for 

example (Damasio, 1999; Damasio, 2003), for feeling 

the emotion associated to a mental state, a converging 

recursive body loop is assumed. In addition, based on 

Hebbian learning (cf. Hebb, 1949; Bi and Poo, 2001; 

Gerstner, and Kistler, 2002) for the strength of the 

connections to the emotional responses, an adaptation 

process is introduced, inspired by the Somatic Marker 

Hypothesis (Damasio, 1994; Damasio, 1996). 

Being described on a different level, each of the 

models includes specific set of parameters for 

cognitive and neurological characteristics of the person 

being modeled. As the set of parameters of these 

models have no known connection with each other, and 

the behavior of such models strongly depends on the 

values for such parameters, a direct comparison 

between the models is impossible. Therefore a 

comparison between the models is made in a more 

indirect way, by mutual mirroring them in each other. 

This mirroring approach uses any set of values that is 

assigned to the parameters for one of the models to 

obtain a number of simulation traces. These simulation 

traces are approximated by the second model, based on 

automated parameter estimation. The error for this 

approximation is considered as a comparison measure. 

The mirroring is applied in two directions, and also 

back and forth sequentially by using the estimated 

parameter values for the second model to estimate new 

parameter values for the first.  

In the paper, first in Section 2 the cognitive model 

for trust dynamic is described, and in Section 3 

simulation results of this model. Section 4 presents a 

formal analysis of the model. In Section 5 the neural 

model is presented, with simulation results discussed in 

Section 6. Section 7 presents a formal analysis of the 

neural model. In Section 8 the mirroring approach for 

comparison of models and the automated parameter 

estimation method are discussed. Finally, Section 9 is a 

discussion. 

2  A Cognitive Model for Relative Trust 

This section proposes a cognitive model that caters the 

dynamics of a human’s trust on competitive trustees. In 

this model trust of the human on a trustee depends on 

the relative experiences with the trustee in comparison 

to the experiences from all of the competitive trustees. 

The model defines the total trust of the human as the 

difference between positive trust and negative trust 

(distrust) on the trustee. It includes personal human 

characteristics like trust decay, flexibility, and degree 

of autonomy (context-independence) of the trust. 

Figure 1 shows the dynamic relationships in the 

proposed model.  

 

 
 

 
Fig. 1. Trust-based interaction with n competitive trustees  

 

In this model it is assumed that the human is bound 

to request one of the available competitive trustees at 

each time step. The probability of the human’s decision 

to request one of the trustees {CT1, CT2, . . . CTn} at 

time t is based on the trust value {T1, T2, . . . Tn} for 

each CTi respectively at time t. In the response of the 

human’s request CTi gives experience value (Ei(t)) 

from the set {-1, 1} which means a negative and 

positive experience respectively. This experience is 

used to update the trust value for the next time point. 

Besides {-1, 1} the experience value can also be 0, 

indicating that CTi gives no experience to the human at 

time point t. First, the parameters that characterize 

human behavior in this model are explained. 

Thereafter, the model itself which incorporates these 

parameters is expressed. Simulation results are shown 

using the model with various parameter settings. 

Finally, a formal mathematical analysis of the model is 

presented. 
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2.1 Parameters Characterizing Individual 

Differences between Humans 

To tune the model to specific personal human 

characteristics a number of parameters are used.  

Flexibility ββββ   The personality attribute called trust 

flexibility (β) is a number between [0, 1] that 

represents in how far the trust level at time point t will 

be adapted when human has a (positive or negative) 

experience with a trustee. If this factor is high then the 

human will give more weight to the experience at t+∆t 

than the already available trust at t to determine the 

new trust level for t+∆t and vice versa. 

Trust Decay γγγγ   The human personality attribute called 

trust decay (γ) is a number between [0, 1] that 

represents the rate of trust decay of the human on the 

trustee when there is no experience. If this factor is 

high then the human will forget soon about past 

experiences with the trustee and vice versa. 

Autonomy ηηηη  The human personality attribute called 

autonomy (η) is a number between [0, 1] that indicates 

in how far trust is determined independent of trust in 

other options. If the number is high, trust is (almost) 

independent of other options. 

Initial Trust The human personality attribute called 

initial trust indicates the level of trust assigned initially 

to a trustee. 

2.2 A Cognitive Model for Relative Trust  

The model is composed from two models: one for the 

positive trust, accumulating positive experiences, and 

one for negative trust, accumulating negative 

experiences. The approach of taking positive and 

negative trust separately at the same time to measure 

total trust is similar to the approaches taken in 

literature for degree of belief and disbelief (Shortliffe 

and Buchanan, 1975) and (Luger and Stubblefield, 

1998). Both negative and positive trusts are a number 

between [0, 1]. While human total trust at CTi on any 

time point t is the difference of positive and negative 

trust at CTi at time t. 

Here first the positive trust is addressed. The 

human’s relative positive trust of CTi at time point t is 

based on a combination of two parts: the autonomous 

part, and the context-dependent part. For the latter part 

an important indicator is the human’s relative positive 

trust of CTi at time point t (denoted by τi
+
(t)): the ratio 

of the human’s trust of CTi to the average human’s 

trust on all options at time point t. Similarly an 

indicator for the human’s relative negative trust of CTi 

at time point t (denoted by τi
-
(t)) is the ratio between 

human’s negative trust of the option CTi and the 

average human’s negative trust on all options at time 

point t. These are calculated as follows: 

 ������ �  	
� ���∑ 	��������� �⁄  and ������ �  	
� ���∑ 	��������� �⁄  

 

Here the denominators ∑ ���������� �⁄   and ∑ ���������� �⁄    express the average positive and 

negative trust over all options at time point t 

respectively. The context-dependent part was designed 

in such a way that when the positive trust is above the 

average, then upon each positive experience it gets an 

extra increase, and when it is below average it gets a 

decrease. This models a form of competition between 

the different options. The principle used is a variant of 

a ‘winner takes it all’ principle, which for example is 

sometimes modeled by mutually inhibiting neurons 

representing the different options. This principle has 

been modeled by basing the change of trust upon a 

positive experience on τi
+
(t) – 1, which is positive 

when the positive trust is above average and negative 

when it is below average. To normalize, this is 

multiplied by a factor Ti
+
(t)*(1 – Ti

+
(t)). For the 

autonomous part the change upon a positive experience 

is modeled by 1 – Ti
+
(t).  In this formulation η 

indicates in how far the human is autonomous or 

context-dependent in trust attribution therefore a 

weighted sum is taken with weights η and 1-η 

respectively. Therefore, using the parameters defined 

in above Ti
+
(t+∆t) is calculated using the following 

equations. Note that here the competition mechanism is 

incorporated in a dynamical systems approach where 

the values of τi
+
(t) have impact on the change of 

positive trust over time. Followings are the equations 

when Ei(t) is 1, 0 and -1 respectively. 

 ����� � ∆�� �   ������ �  
β � η � �1 ! ������" �                                              �1 ! #� � ������� ! 1� � ������ �  �1 ! ������"$� ∆�                   when )*��� �  1 ����� � ∆�� �  ������ ! γ � ������ � ∆�                   when )*��� �  0 ����� � ∆�� �  ������                    when )*��� � !1 

Notice that here in the case of negative experience 

positive trust is kept constant to avoid doubling the 

effect over all trust calculation as negative experience 

is accommodated fully in the negative trust calculation. 

In one formula this is expressed by: 

 



����� � ∆�� � ������ � ,β � ,η � �1 ! ������"� �1 ! #� � ������� ! 1� � ������� �1 ! ������"- � )*���� �)*��� � 1�/ 2 !  γ � ������� �)*��� � 1� � �)*��� ! 1�-  � ∆� 
 

In differential equation form this can be reformulated 

as: 

 0������0� � β �  ,η � �1 ! ������" � �1 ! #�� ������� ! 1 � � ������� �1 ! ������"- � )*���� �)*��� � 1�/ 2 ! γ � ������� �)*��� � 1� � �)*��� ! 1� 
 

Notice that this is a system of n coupled differential 

equations; the coupling is realized by τi
+
(t) which 

includes the sum of the different trust values for all j. 

Similarly, for negative trust followings are the 

equations when Ei(t) is -1, 0 and 1 respectively. 

 ����� � ∆�� �       ������ �  β�  1η � �1 ! ������" � �1 ! #�� ������� ! 1� � �������  �1 ! ������"2 � ∆�                   when )*��� � !1 ����� � ∆�� �  ������ ! γ � ������ � ∆� when )*��� �  0 ����� � ∆�� �  ������                    when )*��� �  1 

 

In one formula this is expressed as: 

 ����� � ∆�� � ������ � ,β � ,η � �1 ! ������"� �1 ! #� � ������� ! 1� � ������� �1 ! ������"- � )*���� �)*��� ! 1�/ 2 !  γ � ������� �)*��� � 1� � �)*��� ! 1�-  � ∆�  
In differential equation form this can be reformulated 

as: 

 0������0� � β �  ,η � �1 ! ������" � �1 ! #�� ������� ! 1 � � ������� �1 ! ������"- � )*���� �)*��� ! 1�/ 2 ! γ � ������� �)*��� � 1� � �)*��� ! 1� 
 

Notice that this again is a system of n coupled 

differential equations but not coupled to the system for 

the positive case described above. 

Combining positive and negative trust. The notions 

of positive and negative relative trust can be combined 

into a single overall relative trust. Hereby, the human’s 

total trust Ti(t) of CTi at time point t is a number 

between [-1, 1] where -1 and 1 represent minimum and 

maximum values of the trust respectively. It is the 

difference of the human’s positive and negative trust of 

CTi at time point t: 

 ����� � ������ ! ������ 
 

In particular, also the human’s initial total trust of 

CTi at time point 0 is Ti(0) which is the difference of 

human’s initial trust Ti
+
(0) and distrust Ti

–
(0) in CTi at 

time point 0. 

 

Decision making model. The final step is to model the 

decision making of the human. As the human’s total 

trust is a number in the interval [-1, 1], to calculate the 

request probability to request CTi at time point t 

(34����) the human’s total trust ����� is first projected 

at the interval [0, 2] and then normalized as follows; 

 34���� � ����� � 1∑ ������ � 1"����  

3 Simulations for the Cognitive Model 

In this section a number of simulation results are 

presented to describe behavior of the model designed 

in section 2. Here human’s total trust on the three 

competitive Information Agents (IA’s) is calculated. It 

is assumed that the human is bound to request one of 

the available competitive information agents at each 

time step. The probability of the human’s decision to 

request one of the information agents {IA1, IA2, IA3} at 

time t is based on the human’s total trust with each 

information agent respectively at time t {T1(t), T2(t), 

T3(t)} (i.e. the equation shown in section 2.4). In 

response of the human’s request for information the 

agent gives an experience value Ei(t).   

3.1   Relativeness 

The first experiment described is conducted to observe 

different aspects, including the relativeness attribute of 

the model (see Figure 2). In the Figure, the x-axis 

represents time, whereas the y-axis represents the trust 

value for the various information agents. The 

configurations taken into the account are as shown in 

Table 1. 



Table 1.  Parameter values to analyze the dynamics of 

relative trust with the change in IAs responses. 

Attribute Symbol Value 

Trust Decay γ 0.01 

Autonomy η 0.25 

Flexibility β 0.75 

Time Step ∆t 0.10 

Initial Trust 

and Distrust of 

{IA1,IA2,IA3} 

T1
+
(0), T2

+
(0), T3

+
(0), 

T1
–
(0), T2

–
(0), T3

–
(0) 

0.50, 0.50, 0.50, 

0.50, 0.50, 0.50 

 

 a)  

 b) 

 c) 

Fig. 2. Model Dependence on amount of positive response 

from IAs: a) Information Agents IA1, IA2, IA3 give 

experience positive, random (equal probability to give a 

positive or negative experience), negative respectively on 

each request by the Human respectively. b) Information 

Agents IA1, IA2, IA3 give experience positive, positive, 

negative on each request by the Human respectively. c) 

Information Agents IA1, IA2, IA3 give experience positive, 

negative, negative on each request by the Human 

respectively. 

 

It is evident from above graphs that the information 

agent who gives more positive experience gets more 

relative trust than the others, which can be considered a 

basic property of trust dynamics (trust monotonicity) 

(Marx and Treur, 2001) and (Jonker and Treur, 1999). 

3.2   Trust Decay  

This second experiment, shown in Figure 3, is 

configured to observe the change in the total trust in 

relation to change in the trust decay attribute γ of the 

human. The configurations taken into the account are 

as shown in Table 2. 

 

 a) 

 b) 

 c) 

Fig. 3. Model Dependence on Trust Decay: a) γ=0.01. b) 

γ=0.05. c) γ =0.10. 
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Table 2.  Parameter values to analyze the dynamics of 

relative trust with the change in trust decay (γ). 

Attribute Symbol Value 

Experience 

{IA1, IA2, IA3} 

E1, E2, E3 1, random, -1 

Autonomy η 0.25 

Flexibility β 0.75 

Time Step ∆t 0.10 

Initial Trust 

and Distrust of 

{IA1,IA2,IA3} 

T1
+
(0), T2

+
(0), T3

+
(0), 

T1
–
(0), T2

–
(0), T3

–
(0) 

0.50,0.50,0.50, 

0.50,0.50,0.50 

 

In these cases also the information agent who gives 

more positive experience gets more relative trust than 

the others. Furthermore, if the trust decay is higher, 

then the trust value drops rapidly on no experience (see 

Figure 3c; more unsmooth fringes of the curve). 

 

3.3   Flexibility of Trust 

This experiment is configured to observe the change in 

the total trust with the change in the human’s 

flexibility of the trust (see Figure 4). Configurations 

taken into the account are shown in Table 3. 

Table 3.  Parameter values to analyze the dynamics of 

relative trust with the change in flexibility (β).  

Attribute Symbol Value 

Experience 

{IA1, IA2, IA3} 

E1, E2, E3 1, random, -1 

Trust Decay γ 0.01 

Autonomy η 0.25 

Time Step ∆t 0.10 

Initial Trust and 

Distrust of 

{IA1,IA2,IA3} 

T1
+
(0), T2

+
(0), T3

+
(0), 

T1
–
(0), T2

–
(0), T3

–
(0) 

0.50, 0.50, 0.50, 

0.50, 0.50, 0.50 

 

In these cases again the information agent who gives 

more positive experience gets more human’s relative 

trust then the others. Furthermore as the values of the β 

decrease the rate of change of the trust also decrease. 

In Figure 4c, β=0 which means that trust does not 

change on experiences at all, so the initial values retain 

for experiences from the information agents hence trust 

value remains stable. Finally in the Figure 4d as initial 

values of the total trust are taken T1(0)=1, T2(0)=0 and 

T3(0)=-1 instead of T1(0)=0, T2(0)=0 and T3(0)=0, so 

the total trust decays due to the trust decay factor and 

becomes stable after a specific time span. 

 

 a) 

 b) 

 c) 

 d) 

Fig. 4. Model Dependence on Trust Flexibility: a) β=1, b) 

β=0.01, c) β=0.00, d) β=0.00 and T1(0)=1, T2(0)=0, T3(0)=-1. 

3.4   Autonomy of Trust 

This experiment (see Figure 5) is configured to observe 

the change in the human trust with the change in the 

human’s autonomy for the total trust calculation. 

Configurations taken into the account are shown in 

Table 4. 
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Table 4.  Parameter values to analyze the dynamics of 

relative trust with the change in autonomy (η).  

Attribute Symbol Value 

Experience 

{IA1, IA2, IA3} 

E1, E2, E3 1, random, -1 

Trust Decay γ 0.01 

Flexibility β 0.75 

Time Step ∆t 0.10 

Initial Trust 

and Distrust of 

{IA1,IA2,IA3} 

T1
+
(0), T2

+
(0), T3

+
(0), 

T1
–
(0), T2

–
(0), T3

–
(0) 

0.50, 0.50, 0.50, 

0.50, 0.50, 0.50 

 

 a) 

 b) 

 c) 

Fig. 5. Model Dependence on Trust Autonomy: a) η=1.0, b) 

η=0.50, c) η=0.00. 

In these cases also the information agent who gives 

more positive experience gets more relative trust then 

the others. Furthermore as the values of the η decrease 

the human weights the relative part of the trust more 

than the autonomous trust. In Figure 5c, η=0 which 

means that the human does not take into account the 

autonomous trust. This gives unstable patterns that are 

extremely sensitive to the initial conditions of the 

system. The example graph shown is just one of these 

patterns. 

3.5   Initial Trust and Distrust 

This experiment is configured to observe the change in 

the total trust with the change in the human’s initial 

trust and distrust (T
+

i(0), T
-
i(0)) on information agents 

(see Figure 6). Configurations taken into the account 

are shown in Table 5. 

Table 5.  Parameter values to analyze the dynamics of 

relative trust with the change in initial trust.  

Attribute Symbol Value 

Experience 

{IA1, IA2, IA3} 

E1, E2, E3 1, random, -1 

Trust Decay γ 0.01 

Autonomy η 0.25 

Flexibility β 0.75 

Time Step ∆t 0.10 

 

 a) 

 b) 

 c) 

Fig. 6. Model Dependence on Initial Trust {T1(0), T2(0), 

T3(0)}: a) 1, 1, -1. b) -1, 0, 1. c) 0, -1, 0. 
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It is observed from the above graphs that the final 

outcome of the trust is not very sensitive for the initial 

values. 

3.6   Dynamics of Trust in Different Cultures 

The degree of reliability of available information 

sources may strongly differ in different types of 

societies or cultures. In some types of societies it may 

be exceptional when an information source provides 

10% or more false information, whereas in other types 

of societies it is more or less normal that around 50% 

of the outcomes of information sources is false. If the 

positive experiences percentage given by the 

information agents varies significantly, then the total 

relative trust of the human on these information agents 

may differ as well.  

This case study was designed to study dynamics of 

the human’s trust on information agents in different 

cultures with respect to the percentages of the positive 

experiences they provide to the human. A main 

question is whether in a culture where most 

information sources are not very reliable, the trust in a 

given information source is higher than in a culture 

where the competitive information sources are more 

reliable. Here cognitive model of relative trust 

described in section 2 is used for simulation purposes. 

Cultures are named with respect to percentage of the 

positive experiences provided by the information 

agents to the human as shown in Table 6 and other 

experimental configurations in Table 7.  

Table 6.  Classification of Human Cultures with respect to 

the Positive Experiences given by the IAs. 

Culture Name Percentage of the positive 

experiences by the information 

agents {IA1, IA2, IA3} 

A 100, 99, 95 

B 50, 40, 30 

C 10, 0, 0 

D 0,0,0 

Table 7.  Parameter values to analyze the Relative Trust 

Dynamics in different Cultures. 

Attribute Symbol Value 

Trust Decay γ 0.01 

Autonomy η 0.25 

Flexibility β 0.75 

Time Step ∆t 0.10 

Initial Trust and 

Distrust of {IA1, 

IA2, IA3} 

T1
+(0), T2

+(0), 

T3
+(0), T1

–(0), T2
–

(0), T3
–(0) 

0.50,0.50,0.50

0.50,0.50,0.50 

Simulation results for the dynamics of the relative trust 

for the cultures mentioned in Table 6 are shown in 

Figure 7. 

` 

 a) 

 b) 

 c) 

 d) 
 
Fig. 7. Dynamics of Relative Trust in Different Cultures. a) 

Culture A, b) Culture B, c) Culture C, d) Culture D 

 

From Figure 7 it can be concluded that in every culture 

whatever relative percentage of the positive 

experiences may be (except when all information agent 

give negative experiences all of the time (see Figure 

7d), the information agent that gives more positive 
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experiences to the human gains more trust. 

Furthermore, the information agent that gives more 

positive experiences at least secure neutral trust 

(T(t)=0) in the long run, even the percentage of 

positive experiences is very low (see Figure 7c). 

4 Analysis of the Cognitive Model  

In this section a mathematical analysis is presented of 

the change in trust upon positive and negative 

experiences. In Section 2 the differential equation form 

of the model for positive trust was formulated as: 

 0������0� � β �  ,η � �1 ! ������" ! �1 ! #�� �1 ! ������ � � ������� �1 ! ������"-  � )*���� �1 � )*���"/ 2 ! γ � ������� �1 � )*���" � �1 ! )*���" 

with ������ �  ��� ���∑ ���������� �5  

 

One question that can be addressed is when for a given 

time point t an equilibrium occurs, i.e. under which 

conditions trust does not change at time point t. 

Another question is under which circumstances trust 

will increase at t, and under which it will decrease. As 

the experience function )*��� is given by an external 

scenario, these questions have to be answered for a 

given value of this function. So, three cases are 

considered: 

 

Case 1:  )*��� = 1 

In this case the differential equation can be simplified 

to 

 0������0� � β � ,η � �1 ! ������" !  �1 ! #�� �1 ! ������ � � ������� �1 ! ������"- 0������0� � β �  ,η  !  �1 ! #� � �1 ! �*� ���∑ �6�����6�1 �5 �
� �*����- � �1 ! �*����" 

 

It follows that  
7	
����7�  ≥ 0 if and only if 

 

[η  !  �1 ! #� � �1 ! 	
� ���∑ 	��������� �5 � � ������ -  ≥ 0     

or  

 ������ � 1.   
 

For ������ 9 1  this is equivalent to (with S(t) 

= ∑ ���������� �:  �1 ! #� � :1 ! 	
� ���;��� �⁄ < � ������ -   ≤ η 

�1 ! #� � �=��� ! � ������ � � ������ -  ≤ η S(t) =���������  ! � ��� ���2    ≤ η 

S(t)/�1 ! #� � ������2 ! =��������� +η S(t)/�1 ! #�  ≥ 0 

 

This quadratic expression in ������ has no zeros when 

the discriminant =���2 ! >�;���η��η  is negative: =���2 ! >�;���η��η 9 0   ⇔   =��� � � =��� ! >�η��η� 9 0    

⇔    0 9  =���/� 9 >η��η 

 

When η > 0.2 then 1/η < 5 and therefore 1/η - 1< 4, 

hence (1-η ) /η < 4 which can be reformulated as  
>η��η  

> 1. As S(t)/n ≤ 1, this shows that for η > 0.2 as long 

as S(t) is positive, the discriminant is always negative, 

and therefore upon a positive experience there will 

always be an increase.  When S(t) = 0, which means all 

trust values are 0, no change occurs. For the case the 

discriminant is ≥0, i.e., S(t)/n ≥  
>η��η  then the quadratic 

equation for  ������ has two zeros symmetric in S(t): 

 ������ � , =���   �/! √ �=���2 ! >�;���η��η � ] / 2n 

 

In this case increase upon a positive experience will 

take place for ������ less than the smaller zero or 

higher than the larger zero, and not between the zeros. 

An equilibrium occurs upon a positive experience 

when ������ � 1  or when equality holds:  

 � ������2 !  =���������  +  η S(t) /�1 ! #� =0 

 

This only can happen when the discriminant is not 

negative, in which case equilibria occur for ������  equal to one of the zeros. 

 

Case 2:  )*���  = 0 

In this case the differential equation can be simplified 

to 

 



0������0� � ! γ � ������ 
 

So, in this case positive trust is decreasing or has in 

equilibrium with positive trust 0. 

 

Case 3:  )*��� = -1 

In this case the differential equation can be simplified 

to 0������0� � 0 

 

So, for this case always an equilibrium occurs in t for 

positive trust. 

For negative trust, the situation is a mirror image of 

the case for positive trust, and by combining the 

positive and negative trust, the patterns for overall trust 

can be analyzed. 

5 A Neural Model for Relative Trust  

The model for trust dynamics from a neurological 

perspective is presented in this section. First, the 

background theory behind the model is presented. 

Thereafter, the model itself is explained in more detail. 

Simulation results are presented, and the resulting 

traces are formally analyzed to see whether they indeed 

show the appropriate patterns. 

5.1 Background principles 

Cognitive states of a person, such as sensory or other 

representations often induce emotions felt within this 

person, as described by neurologist Damasio 

(Damasio, 1999) and (Damasio, 2004); for example: 

  

‘Through either innate design or by learning, we react 

to most, perhaps all, objects with emotions, however 

weak, and subsequent feelings, however feeble.’ 

(Damasio, 2004, p. 93)  
 

In some more detail, emotion generation via a body 

loop roughly proceeds according to the following 

causal chain; see (Damasio, 1999) and (Damasio, 

2004): 

 
cognitive state  →  preparation for bodily response  →   

bodily response  →   

sensing the bodily response  →  sensory representation 

of the bodily response  →  feeling 

 

The body loop (or as if body loop) is extended to a 

recursive body loop (or recursive as if body loop) by 

assuming that the preparation of the bodily response is 

also affected by the state of feeling the emotion as an 

additional causal relation: feeling  →  preparation for the 

bodily response. Such recursiveness is also assumed by 

Damasio (Damasio, 2004), as he notices that what is 

felt by sensing is actually a body state which is an 

internal object, under control of the person: 

 
 ‘The brain has a direct means to respond to the object as 

feelings unfold because the object at the origin is inside 

the body, rather than external to it. (…) The object at the 

origin on the one hand, and the brain map of that object 

on the other, can influence each other in a sort of 

reverberative process that is not to be found, for example, 

in the perception of an external object.’ ((Damasio, 2004) 

p. 91) 

 

Within the model presented in this paper, both the 

bodily response and the feeling are assigned a level or 

gradation, expressed by a number. The causal cycle is 

modeled as a positive feedback loop, triggered by a 

mental state and converging to a certain level of feeling 

and body state.  

Another neurological theory addressing the 

interaction between cognitive and affective aspects can 

be found in Damasio’s Somatic Marker Hypothesis; cf. 

(Damasio, 1996),  (Damasio, 1999), (Damasio, 2004) 

and (Bechara and Damasio, 2004). This is a theory on 

decision making which provides a central role to 

emotions felt. Within a given context, each represented 

decision option induces (via an emotional response) a 

feeling which is used to mark the option. For example, 

a strongly negative somatic marker linked to a 

particular option occurs as a strongly negative feeling 

for that option. Similarly, a positive somatic marker 

occurs as a positive feeling for that option. Damasio 

describes the use of somatic markers in the following 

way:  

 
‘the somatic marker (..) forces attention on the negative 

outcome to which a given action may lead, and functions 

as an automated alarm signal which says: beware of 

danger ahead if you choose the option which leads to this 

outcome. The signal may lead you to reject, immediately, 

the negative course of action and thus make you choose 

among other alternatives. (…)  When a positive somatic 

marker is juxtaposed instead, it becomes a beacon of 

incentive..’ ((Damasio, 1994) pp. 173-174) 

 

Somatic markers may be innate, but may also by 

adaptive, related to experiences: 

 
‘Somatic markers are thus acquired through experience, 

under the control of an internal preference system and 



under the influence of an external set of circumstances ...’ 

((Damasio, 1994) p. 179) 

 

In the model introduced below, this adaptive aspect 

will be modeled as Hebbian learning; cf. (Hebb,  1949; 

Bi and Poo, 2001; Gerstner and Kistler 2002). Viewed 

informally, in the first place it results in a dynamical 

connection strength obtained as an accumulation of 

experiences over time (1). Secondly, in decision 

making this connection plays a crucial role as it 

determines the emotion felt for this option, which is 

used as a main decision criterion (2). As discussed in 

the introduction, these two properties (1) and (2) are 

considered two main functional, cognitive properties of 

a trust state. Therefore they give support to the 

assumption that the strength of this connection can be 

interpreted as a representation of the trust in the option 

considered. 

5.2 Neural Model for Relative Trust 

Informally described theories in scientific disciplines, 

for example, in biological or neurological contexts, 

often are formulated in terms of causal relationships or 

in terms of dynamical systems. To adequately 

formalize such a theory the hybrid dynamic modeling 

language LEADSTO has been developed that 

subsumes qualitative and quantitative causal 

relationships, and dynamical systems; cf. (Bosse, 

Jonker, Meij, and Treur 2007a). This language has 

been proven successful in a number of contexts, 

varying from biochemical processes that make up the 

dynamics of cell behavior (Jonker, Snoep, Treur, 

Westerhoff, and Wijngaards 2008) to neurological and 

cognitive processes (Bosse, Jonker, Los, Torre, and 

Treur,  2007b; Bosse, Jonker, and Treur, 2007c; 

Bosse, Jonker, and Treur, 2008). Within LEADSTO a 
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temporal relation a →→ b denotes that when a state 

property a occurs, then after a certain time delay 

(which for each relation instance can be specified as 

any positive real number), state property b will occur. 

In LEADSTO both logical and numerical calculations 

can be specified in an integrated manner; a dedicated 

software environment is available to support 

specification and simulation.  

An overview of the model for how trust dynamics 

emerges from the experiences is depicted in Figure 8. 

How decisions are made, given these trust states is 

depicted in Figure 9. These pictures also show 

representations from the detailed specifications 

explained below. However, note that the precise 

numerical relations between the indicated variables V 
shown are not expressed in this picture, but in the 

detailed specifications of properties below, which are 

labeled by LP1 to LP11 as also shown in the pictures. 

The detailed specification (both informally and 

formally) of the model is presented below. Here 

capitals are used for (assumed universally quantified) 

variables. First the part is presented that describes the 

basic mechanisms to generate a belief state and the 

associated feeling. The first dynamic property 

addresses how properties of the world state can be 

sensed. 
 
LP1  Sensing a world state 
If  world state property W occurs of strength V 

then  a sensor state for W of strength V will occur. 
world_state(W, V) →→  sensor_state(W, V) 

 

Note that this generic dynamic property is used for a 

specific world state, for experiences with the different 

options and for body states; to this end the variable W 

is instantiated respectively by w, exp1 and exp2, b1 
and b2. From the sensor states, sensory representations 

are generated according to the dynamic property LP2. 

Note that also here for the example the variable P is 

instantiated as indicated. 
 
LP2  Generating a sensory representation for a sensed 

world or body state 
If  a sensor state for world state or body state property P 

with level V occurs,  

then  a sensory representation for P with level V will occur. 

sensor_state(P, V)  →→  srs(P, V) 

 

For a given world state representations for a number 

of options are activated: 
 
LP3  Generating an option for a sensory representation of 

a world state 
If  a sensory representation for w with level V occurs  

then  a representation for optinon o with level V will occur 
srs(w, V) →→  rep(o, V)   

 

Dynamic property LP4 describes the emotional 

response to the person’s mental state in the form of the 

preparation for a specific bodily reaction. Here the 

mental state comprises a number of cognitive and 

affective aspects: options activated, experienced results 

of options and feelings. This specifies part of the loop 

between feeling and body state. This property uses a 

combination model based on a function g(β1, β2, V1, V2, 

V3 ,ω1, ω2, ω3)  including a threshold function. For 

example, 
 

      g(β1, β2, V1, V2, V3,ω1, ω2, ω3)  =  

th(β1, β2,ω1V1 + ω2V2 + ω3V3) 
 

with V1, V2, V3 activation levels and ω1, ω2, ω3  weights of 

the connections, and  threshold function th(β1, β2,V)  = 

1/(1+e-β2(V-β1) ) with threshold β1 and steepness β2. 
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LP4a  From option activation and experience to 

preparation of a body state (non-competitive case) 
If   option o with level V1 occurs  

   and  feeling the associated body state b has level V2 

   and  an experience for o occurs with level V3 

   and  the preparation state for b has level V4 

then   a preparation state for body state b will occur with  

  level V4 + γ (g(β1, β2, V1, V2, V3,ω1, ω2, ω3)-V4) ∆t. 
rep(o, V1)  &  feeling(b, V2)  &  srs(exp, V3) &  
preparation_state(b, V4)  

→→  preparation_state(b,  

V4+ γ (g(β1, β2, V1, V2, V3,ω1, ω2, ω3)-V4) ∆t) 

For the competitive case also the inhibiting cross 

connections from one represented option to the body 

state induced by another represented option are used. A 

function involving these cross connections was 

defined, for example  
 

h(β1, β2, V1, V2, V3, V21,ω1, ω2, ω3, ω21) = 

 th(β1, β2,ω1V1 + ω2V2 + ω3V3 - ω21V21) 
 

for two considered options, with ω21  the weight of the 

suppressing connection from represented option 2 to 

the preparation state induced by option 1.  
 
LP4b  From option activation and experience to 

preparation of a body state (competitive case) 
If  option o1 with level V1 occurs  

   and option o2 with level V21  occurs  

   and feeling the associated body state b1 has level V2 

   and an experience for o1 occurs with level V3 

   and the preparation state for b1 has level V4 

then  a preparation state for body state b1 will occur with  

    level V4+ γ (h(β1, β2, V1, V2, V3, V21,ω1, ω2, ω3, ω21)-V4) ∆t. 
rep(o1, V1)  &  rep(o2, V21)  & feeling(b1, V2)  &  srs(exp1, 
V3) &  preparation_state(b1, V4)  

→→  preparation_state(b1,  

  V4+ γ (h(β1, β2, V1, V2, V3, V21,ω1, ω2, ω3, ω21)-V4) ∆t) 
 

Dynamic properties LP5, LP6, and LP7 together with 

LP2 describe the body loop. 
 
LP5  From preparation to effector state for body 

modification 
If  preparation state for body state B occurs with level V, 

then  the effector state for body state B with level V will 

occur. 

preparation_state(B, V)  →→  effector_state(B, V) 

 
LP6  From effector state to modified body state 
If  the effector state for body state B with level V occurs, 

then  the body state B with level V will occur. 
effector_state(B, V)  →→  body_state(B, V) 

 
LP7  Sensing a body state 
If  body state B with level V occurs, 

then  this body state B with level V will be sensed. 
body_state(B, V)   →→   sensor_state(B, V) 

 
 

 

LP8  From sensory representation of body state to feeling 
If  a sensory representation for body state B with level V 

occurs, 

then  B will be felt with level V. 
srs(B, V)  →→   feeling(B, V) 

 

Alternatively, dynamic properties LP5 to LP7 can 

also be replaced by one dynamic property LP9 

describing an as if body loop as follows. 
 
LP9  From preparation to sensed body state 
If  preparation state for body state B occurs with level V, 

then  the effector state for body state B with level V will 

occur. 

preparation_state(B, V)  →→  srs(B, V) 

For the decision process on which option Oi  to 

choose, represented by action Ai, a winner-takes-it-all 

model is used based on the feeling levels associated to 

the options; for an overview, see Fig. 8.  

This has been realised by combining the option 

representations Oi with their related emotional 

responses Bi in such a way that for each i the level of 

the emotional response Bi has a strongly positive effect 

on preparation of the action Ai  related to option Oi  

itself, but a strongly suppressing effect on the 

preparations for actions Aj  related to the other options 

Oj for j ≠ i. As before, this is described by a function  
 

h(β1, β2, V1, … ,Vm, U1, … ,Um,ω11, …,ωmm) 
 

with Vi  levels for representations of options Oi and Ui 

levels of preparation states for body state Bi related to 

options Oi and ωij  the strength of the connection 

between  preparation states for body state Bi and 

preparation states for action Aj. 

 

LP10  Decisions based on felt emotions induced by the 

options 
If  options Oi with levels Vi occur, 

 and preparation states for body state Bi related to options Oi 

occur with level Ui, 

 and the preparation state for action Ai  for option Oi has 

level Wi 

then  the preparation state for action Ai  for option Oi will 

occur with level Wi  +  

 γ (h(β1, β2, V1, … ,Vm, U1, … ,Um,ω11, .. ωmm) - Wi) ∆t  
rep(O1, V1)  &  … & rep(Om, Vm)  &   
preparation_state(B1, U1) &  … & preparation_state(Bm, Um) 
& preparation_state(Ai, Wi) 

 →→  preparation_state(Ai, Wi  +  

γ (h(β1, β2, V1, … ,Vm, U1, … ,Um,ω11, .. ωmm) - Wi) ∆t) 
 

LP11  From preparation to effector state for an action 

If  preparation state for action A occurs with level V, 

then  the effector state for action A with level V will occur. 
preparation_state(A, V)  →→  effector_state(A, V) 

 

 



Hebbian Adaptation. From a neurological 

perspective the strength of a connection from an 

option to an emotional response may depend on how 

experiences are felt emotionally, as neurons involved 

in the option, the preparation for the body state, and in 

the associated feeling will often be activated 

simultaneously. Therefore such a connection from 

option to emotional response may be strengthened 

based on a general Hebbian learning mechanism 

(Hebb, 1949; Bi and Poo 2001; Gerstner and Kistler 

2002) that states that connections between neurons 

that are activated simultaneously are strengthened, 

similar to what has been proposed for the emergence 

of mirror neurons; e.g., (Keysers, and Perrett, 2004) 

and (Keysers, and Gazzola, 2009). This principle is 

applied to the strength ω1 of the connection from 

option 1 to the emotional response expressed by body 

state b1. The following learning rule takes into 

account a maximal connection strength 1, a learning 

rateη, and an extinction rate ζ. 

 

LP12 Hebbian learning rule for the connection from 

option to preparation 
If  the connection from option o1 to preparation of b1 has 

strength ω1 

  and the option o1 has strength V1  

  and  the preparation of b1 has strength V2  

  and  the learning rate from option o1 to preparation of b1  

 is η 

  and  the extinction rate from option o1 to preparation of b1 

is ζ 

then  after ∆t  the connection from option o1 to preparation 

state b1 will have  

 strength ω1 + (ηV1V2(1 - ω1) - ζω1) ∆t. 

has_connection_strength(rep(o1),preparation(b1), ω1) &  
rep(o1, V1)  &  preparation(b1, V2)  &   

has_learning_rate(rep(o1), preparation(b1), η)  &   

has_extinction_rate(rep(o1), preparation(b1), ζ)     

→→ has_connection_strength(rep(o1), preparation(b1),  

ω1 + (ηV1V2 (1 - ω1) - ζω1) ∆t) 
 

By this rule through their affective aspects, the 

experiences are accumulated in the connection strength 

from option o1 to preparation of body state b1, and 

thus serves as a representation of trust in this option 

o1. A similar Hebbian learning rule can be found in 

((Gerstner and Kistler, 2002) p. 406).  

6 Simulations for the Neural Model 

The model described in Section 4 has been used to 

generate a number of simulation experiments for non-

competitive and competitive cases (see Fig. 10 for 

some example results). To ease the comparison 

between these cases the same model parameter values 

were used for these examples (see Table 8). In Fig. 

10a) example simulation results are shown for the non-

competitive case. Here the subject is exposed to an 

information source that provides experience values 0 

respectively 1 alternating periodically in a period of 

200 time steps each. In this figure it can be observed 

that change in experience leads to changes in the 

connection strengths (representing trust) as well as the 

action effector states.  

Furthermore, the decrease in the connection 

strengths representing trust due to a bad experience (0) 

takes longer than the increase due to a good experience 

(1), which can be explained by the higher value of the 

learning rate than of the extinction rate. 

In Figures 10b), c) and d), the simulation results are 

shown for the competitive case with two competitive 

options having suppression weight 0.5 from option 

representation to preparation state and from 

preparation state to the action state. In this case  the 

subject is exposed to two information sources that 

provides experience values 0 respectively 1 alternating 

periodically in a period of 200 time steps each, in a 

reverse cycle with respect to each other (see Figure 

10b)). Here change in experience changes the 

connections representing trust as well as the action 

effector states. Moreover, in comparison to the non-

competitive case, the learning is slow while decay is 

fast, which is due to the presence of competition. 

Finally Figure 10 shows that the connection strengths 

in the presented model exhibit the two fundamental 

functional properties of trust discussed in section 1, 

namely that trust is based on accumulation of 

experiences over time (see Figure 10c) and that trust 

states are used in decision making by choosing more 

trusted options above less trusted ones (see Figure 

10d). 

 
Table 8. Parameter values used in the example simulations 

 

Parameter Value Meaning 

β1 0.95 threshold value for preparation 

state and action effector state 

β2 10, 

100 

steepness value for preparation 

state, action effector state  

γ 0.90 activation change rate  

η 0.80 learning rate of connection from 

option representation to 

preparation 

ζζζζ 0.10 extinction rate of connection 

from option representation to 

preparation 

∆∆∆∆t 0.90 time step 

ωs, ωa 

 

0.50 

 

suppressing weight from option 

representation to preparation 

state and from preparation state 

to the action state (competitive 

case) 

 



a) 

 b) 

c)  

d) 
 

 

Fig. 10.  Simulation Results: experience, connection 

representing trust, and action effector state for a non-

competitive case in a) and a competitive case in b), c) and d) 

respectively 

7 Analysis of the Neural Model  

The two functional properties of trust states formulated 

in the introduction are: (1) A trust state result from 

accumulation of experiences over time, and (2) Trust 

states affect decision making by choosing more trusted 

above less trusted options. These properties 

characterize trust states from a functional, cognitive 

perspective. Therefore any model or computational or 

physical realization claimed to describe trust dynamics 

has to (at least) satisfy these properties. Such properties 

can be formalized in a temporal logical language, and 

can be automatically verified for the traces that have 

been generated using the proposed model. In this 

section this verification of properties is discussed. 

First, the language used to verify these properties is 

explained. Thereafter the properties and the results of 

the verification are discussed. 

The verification of properties has been performed 

using a language called TTL (Temporal Trace 

Language), that features a dedicated editor and an 

automated checker; cf. (Bosse, Jonker, Meij, 

Sharpanskykh, and Treur, J. 2009). This predicate 

logical temporal language supports formal 

specification and analysis of dynamic properties, 

covering both qualitative and quantitative aspects. TTL 

is built on atoms referring to states of the world, time 

points and traces, i.e. trajectories of states over time. In 

addition, dynamic properties are temporal statements 

that can be formulated with respect to traces based on 

the state ontology Ont in the following manner. Given a 

trace γ over state ontology Ont, the state in γ at time 

point t is denoted by state(γ, t). These states can be 

related to state properties via the infix predicate |=, 

where state(γ, t) |= p denotes that state property p holds 

in trace γ at time t. Based on these statements, dynamic 

properties can be formulated using quantifiers over 

time and traces and the usual first-order logical 

connectives such as ¬, ∧, ∨, ⇒, ∀, ∃. For more details, 

see (Bosse, Jonker, Meij, Sharpanskykh, and Treur, J. 

2009). 

In order to be able to automatically verify the 

properties upon the simulation traces, they have been 

formalized. From the computational verification 

process it was found that indeed they are satisfied by 

the simulation traces of the model for which they were 

verified. The first functional property (1), specifying 

that a trust state accumulates experiences over time, is 

split up into a number of properties. First, two 

properties are specified which express trust 

accumulation for the non-competitive case, whereby 

the connections for the respective trustees are not 

influenced by experiences with competitors. 
 

P1.1 Connection strength increases with more 

positive experience (non-competitive case) 

If a sensor state indicates a particular value V1 of an 

experience E, and E is an experience for trustee T, and 

the current strength of the connection for trustee T is 
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V2, and V1 is higher than V2, then the connection 

strength will remain the same or increase. 
∀γ:TRACE, t:TIME, E:EXPERIENCE, T:TRUSTEE, 
V1,V2,V3:VALUE 

[ state(γ, t) |= sensor_state(E, V1) & 

        state(γ, t) |= connection(T, V2) &   

  state(γ, t) |= matches(E, T) & V1 > V2 

   ⇒  ∃V3:VALUE [state(γ, t+1) |= connection(T, V3) &  

               V3 ≥ V2 ] ] 
 

P1.2 Connection strength decreases with more 

negative experience (non-competitive case) 
If a sensor state indicates a particular value V1 of an 

experience E, and E is an experience for trustee T, and 

the current strength of the connection for trustee T is 

V2, and V1 is lower than V2, then the connection 

strength will remain the same or decrease. 

 
∀γ:TRACE, t:TIME, E:EXPERIENCE, T:TRUSTEE, 
V1,V2,V3:VALUE 

[ state(γ, t) |= sensor_state(E, V1) &  

  state(γ, t) |= connection(T, V2) &   

   state(γ, t) |= matches(E, T) & V1 < V2 

   ⇒  ∃V3:VALUE [ state(γ, t+1) |= connection(T, V3) & 

              V3 ≤ V2 ] ] 
 

Besides the non-competitive case, also properties 

have been specified for the competitive case. Hereby, 

the experiences with other competitive information 

sources are also taken into account. 
 

P2.1 Connection strength increases with more 

positive experience (competitive case) 

If a sensor state indicates a particular value V1 of an 

experience E, and E is an experience for trustee T, and 

the current strength of the connection for trustee T is 

V2, and V1 is higher than V2, and all other experiences 

are lower compared to V1, then the connection strength 

will remain the same or increase. 
∀γ:TRACE, t:TIME, E:EXPERIENCE, T:TRUSTEE, 
V1,V2,V3:VALUE 

       [ state(γ, t) |= sensor_state(E, V1) &   

   ∀E’ ≠ E [ ∃V’:VALUE state(γ, t) |= sensor_state(E’, V’) &  
                  V’ < V1 ] &    

 state(γ, t) |= connection(T, V2) & 

 state(γ, t) |= matches(E, T) & V1 > V2 

⇒  ∃V3:VALUE [ state(γ, t+1) |= connection(T, V3) & 

                            V3 ≥ V2 ] ] 
 

P2.2 Connection strength decreases with more 

negative experience (competitive case) 

If a sensor state indicates a particular value V1 of an 

experience E, and E is an experience for trustee T, and 

the current strength of the connection for trustee T is 

V2, and V1 is lower than V2, and all other experiences 

are higher compared to V1, then the connection 

strength will remain the same or decrease. 
∀γ:TRACE, t:TIME, E:EXPERIENCE, T:TRUSTEE, 
V1,V2,V3:VALUE 

 [ state(γ, t) |= sensor_state(E, V1) &    

  ∀E’ ≠ E [ ∃V’:VALUE state(γ, t) |= sensor_state(E’, V’) &  
                  V’  >V1 ] &     

  state(γ, t) |= connection(T, V2) & 

  state(γ, t) |= matches(E, T) & V1 < V2 

   ⇒   ∃V3:VALUE [ state(γ, t+1) |= connection(T, V3) & 

         V3 ≤ V2 ]] 
 

Finally, property P3 is specified which compares 

different traces, as shown below. 
 

P3.1 Higher experiences lead to higher connection 

strengths (non-competitive case) 

If within one trace the experiences for a trustee are 

always higher compared to the experiences for a 

trustee in another trace, then in that trace the 

connection strengths will always be higher. 
∀γ1, γ2:TRACE, E:EXPERIENCE, T:TRUSTEE 

[ γ1≠ γ2 &  state(γ1, 0) |= matches(E, T) &   

∀t:TIME [ ∃V1, V2:VALUE [ 

                 state(γ1, t) |= sensor_state(E, V1) &  

            state(γ2, t) |= sensor_state(E, V2) & V1>V2 ] ] 

 ⇒   ∀t:TIME [ ∃V1, V2:VALUE [  

                             state(γ1, t) |= connection(T, V1) &   

                       state(γ2, t) |= connection(T, V2) &   
                       V1>V2 ] ] ]  

 

P3.2 Higher experiences lead to higher connection 

strengths (competitive case) 

If within one trace the experiences for a trustee are 

always higher compared to the experiences for a 

trustee in another trace, and there are no other 

experiences with a higher value at that time point, then 

in that trace the connection strengths will always be 

higher. 
∀γ1, γ2:TRACE, E:EXPERIENCE, T:TRUSTEE 

[ γ1≠ γ2 &  state(γ1, 0) |= matches(E, T) &   

 ∀t:TIME [ ∃V1, V2:VALUE [  

     state(γ1, t) |= sensor_state(E, V1) & 

∀E’ ≠ E [ ∃V’:VALUE 

     state(γ1, t) |= sensor_state(E’, V’) & V’ ≤ V1 ] &  

                 state(γ2, t) |= sensor_state(E, V2) & 

     ∀E’’ ≠ E [ ∃V’’:VALUE 

              state(γ2, t) |= sensor_state(E’’, V’’) & V’’ ≤ V2 ]   &  
    V1>V2 ] ]  

 ⇒  ∀t:TIME [ ∃V1, V2:VALUE [ 

              state(γ1, t) |= connection(T, V1) &  

    state(γ2, t) |= connection(T, V2) & V1 > V2 ] ] ]  
 

The formalization of the second functional property 

(2), i.e., trust states are used in decision making by 

choosing more trusted options above less trusted 

options, is expressed as follows. 
 

P4 The trustee with the strongest connection is 

selected 

If for trustee T the connection strength is the highest, 

then this trustee will be selected. 
∀γ:TRACE, t1:TIME, T:TRUSTEE, V1:VALUE 

[ [ state(γ, t1) |= connection(T, V1)  &  

    state(γ, t1) |= sensor_state(w, 1)  & 

    ∀T’, V’ [ [ T’ ≠ T & 

           state(γ, t1) |= connection(T’, V’) } ⇒ V’ < V1 ] ] 



⇒   ∃t2:TIME < t1 + 10   [ 

                state(γ, t2) |= effector_state(T) ] ] 
 

Note that in the property, the effector state merely 

has one argument, namely the trustee with the highest 

effector state value. 

8. Comparing the Models by Mirroring 

As mentioned before already, a direct comparison of 

the two models explained above is non-trivial as these 

models are described on a different level and each of 

the models include a specific set of parameters for 

cognitive and neurological characteristics of the person 

being modeled. The mapping between these parameters 

is difficult. As a consequence, relating the model from 

a formal perspective (i.e. relating the concepts of one 

model to the concepts of the other model) is not 

feasible. Of course, it is interesting to investigate 

whether the same patterns can result from the two 

different models to show that at least the same output 

can be provided given a similar input received by the 

model (and hence, show that the models are able to 

represent trust in a similar manner). In order to obtain 

this comparison, the models are compared in a more 

indirect way, by mutual mirroring them in each other.  

 

The mirroring approach used to compare the two 

parameterized models for trust dynamics works as 

follows: 
 

• Initially, for one of the models any set of values is 

assigned to its parameters  

• Next, a number of scenarios are simulated based 

on this first model. These scenarios are carefully 

selected to allow for an investigation upon 

interesting experience sequences. 

• The resulting simulation traces for the first model 

are approximated by the second model, based on 

automated parameter estimation.  

• The error for the most optimal values for the 

parameters of the second model is considered as a 

comparison measure.  
 

Parameter estimation can be performed according to 

different methods, for example, exhaustive search, 

bisection or simulated annealing (Hoogendoorn, Jaffry, 

and Treur, 2009). As the models considered here have 

only a small number of parameters exhaustive search is 

an adequate option. Using this method the entire 

attribute search space is explored to find the vector of 

parameter settings with maximum accuracy. This 

method guarantees the optimal solution, described as 

follows: 
 

for each: observed behavior B 

for each: vector of parameter value settings P 

calculate the accuracy of P 

end for 
output: the vector of parameter settings with 

maximal accuracy 

end for 
 

In the above algorithm, calculation of the accuracy 

of a vector of parameter setting P entails that agent 

predicts the information source to be requested and 

observes the actual human request. It then uses the 

equation for calculating the accuracy described before. 

Here if p parameters are to be estimated with precision 

q (i.e., grain size 10
-q

), the number of options is n, and 

m the number of observed outcomes (i.e., time points), 

then the worst case complexity of the method can be 

expressed as О ((10)
pq

 nm
2
), which is exponential in 

number of parameters and precision. In particular, 

when p=3 (i.e., the parameters β, γ, and η), q=2 (i.e., 

grain size 0.01), n=3 and m=100, then the complexity 

will result in 3 x 10
10

 steps. 

A number of experiments were performed using the 

mutual mirroring approach described in section 5 to 

compare the two parameterized models for trust 

dynamics. Experiments were set up according to two 

cases: 
 

1. Two competitive options provide experiences 

deterministically, with a constant positive, 

respectively negative experience, alternating 

periodically in a period of 50 time steps each (see 

Figure 11).  

2. Two options provide experiences with a certain 

probability of positivity, again in an alternating 

period of 50 time steps each.  

The first case of experiments was designed to 

compare the behavior of the models for different 

parameters under the same deterministic experiences 

while the second case is used to compare the behavior 

of the models for the (more realistic) case of 

probabilistic experience sequences. The general 

configurations of the experiment that are kept constant 

for all experiments are shown in Table 9. 

Three experiments were performed for each case: 

after some parameter values assigned to the cognitive 

model, its behavior was approximated by the neural 

model, using the mirroring approach based on the 

automatic parameter estimation technique described 

above. The best approximating realization of the neural 

model was used again to approximate the cognitive 

model using the same mirroring approach. This second 

approximation was performed to minimize uni-

directionality of the mirroring approach that might bias 

the results largely if performed from only one model to 

another and not the other way around. 



Table 9. General Experimental Configuration 

Parameter Neural 

Model 

Cognitive 

Model 

Number of competitive options 2 2 

Time step (difference equations) 0.1 0.1 

Number of time steps 500 500 

Initial trust values of option 1 and 

option 2 

0.5, 0.5 0, 0 

Strength of connection from 

option to emotional response (ω1) 

0.5 not 

applicable 

Strength of connection between 

preparation state of body and 

preparation state of action (ωij) 

0.5 not 

applicable 

Strength of connection between 

feeling and preparation of body 

state 

0.25 not 

applicable 

Value of the world state 1 not 

applicable 

Grain size in parameter 

estimation 

0.05 0.01 

 

An instance of a parameterized model can uniquely 

be represented by a tuple containing the values of its 

parameters. Here the cognitive and neural models 

described in section 2 and 3 are represented by tuples 

(γ, β, η) and (σ, τ, γ, η, ζ) respectively. For the sake of 

simplicity, a few parameters of the neural model, 

namely ω1, ω12 and ω21, were considered fixed with 

value 0.5, and were not included in model 

representation tuple. Furthermore, the initial trust 

values of both models are assumed neutral (0.0 and 0.5 

for cognitive and neural model resp.), see Table 9. 
 

Case 1 

In this case the behavior of the models was compared 

using the experiences that were provided 

deterministically with positive respectively negative, 

alternating periodically in a period of 50 time steps 

each (see Figure 11). Here three different experiments 

were performed, where the parameters of cognitive 

model are assigned with some initial values and then 

its behavior is approximated by the neural model. The 

best approximation of the neural model against the 

initially set cognitive model was reused to find the best 

matching cognitive model.  

 

Results of the approximated models and errors are 

shown in Table 10 while the graphs of the trust 

dynamics are presented in Figure 12. Note that for the 

sake of ease of comparison and calculation of standard 

error the trust values of cognitive model are projected 

from the interval [-1, 1] to [0, 1] (see Figure 12). 

 

 

Fig. 11. a) Experience sequence for cognitive model, b) 

Experience sequence for neural model 

In Table 10, the comparison error ε is the average 

of the root mean squared error of trust of all options, as 

defined by the following formula, 

 
 

ε � 1� �?@?���6��� ! ��6�A��AB
���

�
���  

 

In the above formulation, n is the number of 

options, m is the number of time steps while T(j)1i and 

T(j)2i  represent trust value of option i at time point j for 

each model, respectively.  

Table 10. Results of Case 1. 

Exp. Initial Model Approximating 

Model using the 

mirroring approach 

Comparison 

Error (εεεε) 

1 CM(0.99, 0.75, 0.75) NM(0.55, 10, 0.15, 

0.90, 0.50) 

0.074050 

 NM(0.55, 10,0 .15, 

0.90, 0.50) 

CM(0.96, 0.20, 0.53) 0.034140 

2 CM(0.88, 0.99, 0.33) NM(0.35, 10, 0.60, 

0.95, 0.60) 

0.071900 

 NM(0.35, 10, 0.60, 

0.95, 0.60) 

CM(0.87, 0.36, 0.53) 0.059928 

3 CM(0.75, 0.75, 0.75) NM(0.30, 10, 0.95, 

0.90, 0.60) 

0.138985 

 NM(0.30, 10, 0.95, 

0.90, 0.60) 

CM(0.83, 0.37, 0.55) 0.075991 

 

In Table 10 for experiment 1 initially the cognitive 

model was set with parameters (0.99, 0.75, 0.75) which 
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was then approximated by the neural model. The best 

approximation of the neural model was found to be 

(0.55, 10, 0.15, 0.90, 0.50) with an approximate 

average of root mean squared error of all options ε 

value 0.074050. Then this setting of neural model was 

used to approximate cognitive model producing best 

approximate with parameter values (0.96, 0.20, 0.53) 

producing ε  = 0.034140. Similarly the results of other 

two experiments can be read in Table 10.  
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Fig. 12. Dynamics of the Trust in Case 1 a) Experiment 1, b) 

Experiment 2, c) Experiment 3 

 

 

Figure 12 represents the dynamics of the trust in the 

two options over time for the deterministic case. The 

horizontal axis represent time step while vertical axis 

represent the value of trust. The graphs for each 

experiment are represented as set of three figures, 

where the first figure shows the dynamics of the trust 

of both options by the cognitive model with an initial 

setting as described in the second column of the first 

row of each experiment of Table 10. The second figure 

shows the traces of the dynamics of trust by the neural 

model as described in the third column of the first row 

of each experiment of Table 10. Finally the third figure 

shows the approximation of the cognitive model by the 

neural model, where the neural model is described in 

the second column of the second row of each 

experiment of Table 10 (which is similar to third 

column of the first row of each experiment), and the 

approximated cognitive model is presented in the third 

column of the second row of each experiment. From 

Table 10 and Figure 12 it can be observed that the 

mirroring approach based on automatic parameter 

estimation when used in bidirectional way gives a 

better realization of both models in each other, 

resulting in a smaller comparison error and better curve 

fit. 

Case 2 

In the second case the behavior of the models was 

compared when experiences are provided with a 

certain probability of positivity, again in an alternating 

period of 50 time steps each. Also here three different 

experiments were performed, where the parameters of 

the cognitive model were assigned with some initial 

values and then its behavior was approximated by the 

neural model. The best approximation of the neural 

model against initially set cognitive model was reused 

to find the best matching cognitive model. In 

experiment 1, 2 and 3 the option 1 and option 2 give 

positive experiences with (100, 0), (75, 25) and (50, 

50) percent of probability, respectively. Results of 

approximated models and errors for this case are 

shown in Table 11while the graphs of trust dynamics 

are presented in Figure 13. Note that for the sake of 

ease of comparison and calculation of the standard 

error, again the trust values of the cognitive model are 

projected from the interval [-1, 1] to [0, 1] (see Figure 

13). In Table 11 for experiment 1 initially the cognitive 

model was set with parameters (0.99, 0.75, 0.75) which 

was then approximated by the neural model. 

 

 

Table 11. Results of Case 2. 

Exp. Initial Model Approximating 

Model using the 

mirroring approach 

Error (εεεε) 

1 CM(0.99, 0.75, 0.75) NM(0.85, 10, 0.95, 

0.20, 0.05) 

0.061168 

 NM(0.85, 10, 0.95, 

0.20, 0.05) 

CM(0.97, 0.99, 0.18) 0.045562 

2 CM(0.99, 0.75, 0.75) NM(0.40, 20, 0.90, 

0.20, 0.15) 

0.044144 

 NM(0.40, 20, 0.90, 

0.20, 0.15) 

CM(0.83, 0.05, 0.99) 0.039939 

3 CM(0.99, 0.75, 0.75) NM(0.10, 20, 0.45, 

0.10, 0.10) 

0.011799 

 NM(0.10, 20, 0.45, 

0.10, 0.10) 

CM(0.99, 0.50, 0.99) 0.011420 

 

The best approximation of the neural model was 

found to be (0.85, 10, 0.95, 020, 0.05) with an 

approximate average of root mean squared error of all 

options ε of value 0.061168. Then this setting of neural 

model was used to approximate cognitive model 

producing best approximate with parameter values 

(0.97, 0.99, 0.18) and ε  0.034140.  Similarly the 

results of other two experiments could also be read in 

Table 11.  

Fig. 13 represents the dynamics of the trust in the 

two options over time for the probabilistic case. The 

horizontal axis represents time while the vertical axis 

represents the values of trust. Here also the graphs of 

each experiment are represented as set of three figures, 

where the first figure shows the dynamics of the trust 

in both options by the cognitive model with an initial 

setting as described in the second column of the first 

row of each experiment of Table 11.   

The second figure shows the traces of the dynamics 

of trust by the neural model as described in the third 

column of the first row of each experiment of Table 11. 

Finally, the third figure is the approximated cognitive 

model by the neural model, where the neural model is 

described in the second column of the second row of 

each experiment of Table 11 (which is similar to third 

column of the first row of each experiment), and the 

approximated model is presented in the third column of 

the second row of each experiment. 

As already noticed in case 1, also here it can be 

observed that the mirroring approach based on 

automatic parameter estimation when used in 

bidirectional way gives a better realization of both 

models in each other, resulting smaller comparison 

error and a better curve fit. Furthermore, it can also be 

noted that as the uncertainty in the options behavior 

increases, both models show more similar trust 

dynamics producing lower error value in comparison. 

 



 

 
a) 

 

 

 
b) 

 

 

 
c) 

Fig. 13. Dynamics of the Trust in Case 2, a) Experiment 1, b) 

Experiment 2, c) Experiment 3 

9  Discussion 

This paper has introduced a cognitive and a neural 

model for relative trust in competitive trustees. Within 

these models parameters have been introduced to tailor 

it towards a particular human. Simulation experiments 
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have been run, and formal verification techniques have 

been applied to show that models indeed exhibit 

desired patterns. A variety of trust models have been 

proposed in the literature (Falcone and Castelfranchi, 

2004; Jonker and Treur, 1999). These trust models 

attempt to determine the level of trust in certain agents 

based upon experiences. They do however not take into 

account the notion of relativeness of this trust. Models 

have been proposed for relative trust as well. In (Beth, 

Borcherding  and Klein, 1994) a model is presented 

that allows an agent to combine multiple sources for 

deriving a trust value. This notion of relativeness 

differs from the notion used in this paper. (Kluwer and 

Waaler, 2006) extends an existing trust model of 

(Jones, 2002) with the notion of relative trust. They 

take as a basis certain trust values determined by the 

model (Jones, 2002), and compare these values in 

order to make statements about different trust values 

for different agents. In determining the trust itself, they 

do not incorporate the experiences with other agents 

that can perform similar tasks, which is done in this 

paper. In (Maanen and Dongen, 2005) a trust model is 

utilized to allocate decision support tasks. In the 

model, relative trust is addressed as well but again not 

incorporated in the calculation of the trust value itself. 

The proposed neural model incorporates the 

reciprocal interaction between cognitive and affective 

aspects based on neurological theories that address the 

role of emotions and feelings. The model describes 

more specifically how considered options and 

experiences generate an emotional response that is felt. 

For feeling the emotion, based on elements taken from 

(Damasio, 1999), (Damasio, 2003) and (Bosse, Jonker, 

and Treur, 2008), a converging recursive body loop is 

included in the model. An adaptation process based on 

Hebbian learning (Hebb, 1949, Bi and Poo, 2001, 

Gerstner and Kistler, 2002), was incorporated, inspired 

by the Somatic Marker Hypothesis described in 

(Damasio, 1994), (Damasio, 1996) and (Bechara and 

Damasio,  2004), and as also has been proposed for the 

functioning of mirror neurons; e.g., (Keysers and 

Perrett, 2004) and (Keysers and Gazzola, 2009). The 

idea of somatic marking is very general and functions 

as a kind of integrating factor in practically all mental 

processes, in particular in those in which affective and 

cognitive states interact in an adaptive manner. 

Therefore it is a quite useful modelling concept with a 

wide applicability; for a different application of this 

concept, in particular to model interacting cognitive 

and affective aspects of desires, see (Bosse, 

Hoogendoorn, Memon, Treur, and Umair, 2010). 

The model was specified in the hybrid dynamic 

modeling language LEADSTO, and simulations were 

performed in its software environment; cf. (Bosse, 

Jonker, Meij, and Treur, 2007a). It has been shown that 

within the model the strength of the connection 

between a considered option and the emotional 

response induced by it, satisfies two properties that are 

considered as two central functional properties 

defining the causal or functional role of a trust state as 

a cognitive state (Jonker and Treur, 2003):  

 

(1) it results from accumulation of experiences, and  

(2) it affects deciding for the option.  

 

This provides support for the assumption that the 

strength of this connection can be interpreted as a 

representation of the trust level in the considered 

option. Models of neural processes can be specified at 

different levels of abstraction. The model presented 

here can be viewed as a model at a higher abstraction 

level, compared to more detailed models that take into 

account more fine-grained descriptions of neurons and 

their biochemical and/or spiking patterns. States in the 

presented model can be viewed as abstract descriptions 

of states of neurons or as representing states of groups 

of neurons. An advantage of a more abstract 

representation is that such a model is less complex and 

therefore may be less difficult to handle, while it can 

still be shown that the model is able to express the 

essential dynamics of trust.  

In addition, in the paper the proposed cognitive and 

neural model of trust have been compared. As the 

parameter sets for both models are different, the 

comparison involved mutual estimation of parameter 

values by which the models were mirrored into each 

other in the following manner. Initially, for one of the 

models any set of values was assigned to the 

parameters of the model, after which a number of 

scenarios were simulated based on this first model. 

Next, the resulting simulation traces for this first model 

were approximated by the second model, based on 

automated parameter estimation. The error for the most 

optimal values for the parameters of the second model 

was considered as a comparison measure. It turned out 

that approximations could be obtained with error 

margins of up to about 10%. Here the results for the 

(more realistic) case of probabilistic experience 

sequences show a better approximation than for the 

deterministic case. This can be considered a positive 

result, as the two models have been designed in an 

independent manner, using totally different concepts 

and techniques. In particular, it shows that the 

cognitive model, which was designed first, without 

taking into account neurological knowledge, can still 

be grounded in a neurological context, which is a 

nontrivial result.  

Summarising, the claims of the paper that have been 

justified positively are that: 

 



(1) appropriate patterns of trust dynamics are 

generated by the models,  

(2) the models are based upon relevant theories 

from the respective domains, and  

(3) they can be compared to each other in a 

reasonably accurate manner. 

 

For future work, an interesting option is to see how 

well the parameters of the models can be derived by a 

personal assistant (based upon the requests provided as 

output by the human). Also how such a more abstract 

models like neural model of relative trust can be 

related to more detailed models, and in how far 

patterns observed in more specific models also are 

represented in such a more abstract model. 

Furthermore, part of future work is to validate the 

model based upon empirical data obtained from 

experiments. 
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