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In recent years, to comprehend and analyze complex systems, multiagent systems modeling and simulation are being widely used
across various disciplines. Two major approaches used for multiagent systems modeling and simulation are agent-based modeling
(ABM) and population-based modeling (PBM). In multiagent community, it is a silent assumption that both approaches represent
similar dynamics for large population size. One of the recent studies from literature has reported similar results for a model of
situation awareness spread inmultiagent systems. Trust is a significant factor that affects agents’ communication, and consequently it
controls spread of situation awareness among agents in amultiagent system. Hence, current work firstly extends the reportedmodel
of situation awareness spread from literature, to incorporate interagent trust for both ABM and PBM. Later, these extended models
are used for comparative evaluation of both approaches. Various simulation experiments for different population sizes (small and
large) as well as population types (homogenous and heterogeneous) are conducted and analyzed. Results of these experiments show
that for large and homogeneous population, ABM approximates behavior of PBM, but for even slightly heterogeneous population,
these approaches do not produce similar results irrespective of population sizes. Thus, the current study reports that, under some
conditions, ABM and PBM produce similar results for trust-based situation awareness spread in multiagent systems, but this
assumption does not hold true at large.

1. Introduction

In recent years, there is an urge to comprehend complex
systems in order to better understand the world. World is
very complex to understand in its totality with many factors
contributing towards its complexity. With the advent of
sociotechnical systems, there is a dire need to analyze the rela-
tions, strengths, and weaknesses of these systems on overall
environment. Thus, it is of utmost importance to understand
and analyze the behavior of human beings in certain condi-
tions, so that the emerging sociotechnical systems can serve
their purpose well. Hence, practitioners and scientists are
working to develop systems that can help us in understanding
the underlying relations between various entities in world as
well as to better comprehend and analyze the human behavior
and needs. In this pursuit, multiagent systems (MAS) are
on rise. MAS refer to group of multiple intelligent agents,
with each having their own beliefs, desires, and intentions

and each wanting to fulfill his/her goals. These agents can
communicate with each other, can influence each other’s
beliefs and desires, can compete and/or collaborate in order
to achieve their respective goals.

The modeling and development of MAS can be carried
out using variety of ways. The domain of computational
modeling comprises primary concepts and constructs for
modeling of real world phenomenon’s using computational
modeling and simulation. In context of MAS, computational
modeling offers two widely used approaches, namely, agent-
based modeling (ABM) and population-based modeling
(PBM), respectively. ABM tends to provide individual level
insights; thus, it models changes at individual level. It sup-
ports incorporation of multiple individual factors in the
system, where primary actor is an agent, and systems are
formed via collection of agents. The objective of ABM is
to analyze the effects of individual agents having different
properties on the entire system. PBM, on the other hand, as its
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name suggests, focuses on providing population level/global
insights regarding any phenomenon of interest. It deals with
groups as whole and tends to study group dynamics at popu-
lation level and their impact on the overall system. As ABM
includes wide variety of parameters and offersmore flexibility
than that of PBM, ABM is computationally expensive than
PBM and is assumed as a more realistic modeling technique.
In MAS community, it is a silent assumption that if results of
ABM are aggregated at population level for large population
size, both ABM and PBM present similar dynamics. Thus,
in this study the primary focus is to perform comparative
evaluation of ABM and PBM.

In order to compare ABM and PBM, an existing study
from literature is selected, which performed comparison
between these two approaches as well and reported that ABM
and PBM both present similar dynamics when population
size is large. This existing study models the phenomenon
of spread of situation awareness (SA). SA refers to flow of
information regarding particular event occurrence within a
group of agents. It is a perception of environment by the agent
at a particular time and surrounding context followed by the
projection of events in near future.

There are multiple studies that analyze and study trust
dynamics in various environments and domains [1–4]. As
individuals’ decisions and beliefs about surroundings and
environment are affected by their trust in other agents they
are communicating with, trust is one factor that affects
SA. Hence, trust-based SA incorporates mutual trust of
communicating agents for better SA and it is being recog-
nized as the basis of efficient group decision-making. It is
of utmost importance in safety critical systems including
aviation, power plant operation, and air traffic control. A
brief study covering applications of the SA in general is
presented in [5]. In the last couple of years, dynamics of SA
are studied in variety of ways including gaming simulators,
business intelligence, and online discussions using various
computational techniques [6–12]. In current study, existing
model of SA is being extended to trust-based SA to make the
resultant model more realistic.

Hence, in this study, primary aim is to extend computa-
tional model of SA presented in [13] to trust-based SA using
ABM and PBM techniques. Keeping this in view, the key
goal of the current research is to analyze the proposed model
with both computational modeling paradigms, namely, ABM
and PBM, using homogenous as well as heterogeneous
populations. In addition, comparative analysis of ABM and
PBM is also presented in the light of conducted experiments.
The rest of the paper describes related background, outlines
methodology opted to build the system that is an extension
to a previous model proposed in [13], and briefly explains the
conducted experiments and respective results against various
populations, followed by conclusion and future directions.

2. Background and Literature Review

Multiagent systems (MAS) are recently on rise due to advent
of sociotechnical systems. MAS are being used in various
domains to better comprehend and analyze the strengths,

weaknesses, and needs of human users. Some relevant studies
in this regard include [14–21] that demonstrate applications of
MAS in car tracking, deployment of distributed applications,
land usage and land covering analysis, and serious games
development regarding health, environment, and water man-
agement.

The primary research focus of the current study is
comparative evaluation of the twowidely used approaches for
MASmodeling, namely, ABM and PBM. In this regard, there
exist several studies in literature which perform comparison
between these approaches. Research study presented in [22]
entirely focuses on trust dynamics and performs variety of
experiments using both modeling approaches followed by
their comparative analysis. Another comparative study in
domain of criminology is presented in [23], which studies
the phenomenon of crime displacement. Several experiments
with simple and complex functions are performed in this
study with respect to displacement of crime. In the light
of conducted experiments, study concludes that, for large
population size, ABM tends to approximate the results of
PBMwhere PBMhas the advantage of being computationally
efficient. Similar research study carried out in [24] is focused
on epidemics and economics, which provide a comprehensive
comparison on ABM and PBM approaches. It concludes
that these approaches may have similar performance against
certain conditions, but that is not always the case.

As far as situation awareness and trust are concerned,
both these concepts are applicable only when we have
multiple agents in system. Thus, in order to study relation
between SA and trust, that is, trust-based SA, MAS can be
used. Several studies reported in literature deal with trust-
based SA.The research study carried out in [25] analyzes SA,
taking interpersonal trust into account. This study models
the trust-based SA using ABM. Hence, the resultant model is
quite detail-oriented. In order to verify the results, air control
case study was employed and results show significant effect of
trust information on operation controller’s SA. The concept
of trust in this study is modeled using various factors that
include domain knowledge of trustee, interpersonal trust,
trust in information source, and trust of an agent in its own
self. The resultant model is quite complex and, consequently,
cannot be modeled using PBM with such minor attention
to details. Other research studies include [26, 27] that study
the relation between trust and SA in the context of Diner’s
Dilemma game and autonomous vehicles, respectively.

As the existing model for trust-based SA [25] cannot be
readily converted into its population-based counterpart, the
current study extends a relatively simple model of SA spread
as presented in [13] with incorporation of interagent trust
using both ABM and PBM. This existing study models the
spread of SA within the group using both ABM and PBM
approaches. Later, comparative analysis of both modeling
approaches is also presented. In the light of conducted
experiments, it concludes that both modeling approaches
represent similar dynamics if the population size is large.

Therefore, in the current study, extended model of trust-
based SA is being used in order to perform comparative eval-
uation of these modeling approaches. Moreover, experiments
are performed using homogenous as well as heterogeneous



Complexity 3

populations using various values for interagent trust. Current
study is an extension of our previous work [28], which is
majorly focused onmodel formulation for trust-based SAand
it performs experiments using homogenous population only.

3. Methodology

In order to perform the comparative evaluation, first of
all, the existing model presented in [13] is extended to
incorporate interagent trust. This section briefly covers the
details regarding existing model and its proposed extension.
Case study used is similar to that of original model, which
belongs to Air Traffic Management domain. Case study is
about a couple of flights, where some are in line and waiting
for signal/command to take off. At a time, only one air vehicle
is signaled for takeoff. The case focuses on a scenario when
a pilot misinterprets the command and starts to take off,
whereas another vehicle was already signaled for takeoff on
crossing runway at the same time. Both vehicle crews were
unaware that another vehicle is also on the runway. Control
tower, after analyzing the situation, signaled one of the flight
pilots to abort the takeoff. Pilot, in this situation, had to check
whether it is possible to abort the takeoff by applying brakes
or not. Eventually, after analyzing the situation, the pilot
instructed copilot to stop takeoff by applying brakes. During
braking, crew saw other flight flying close in with distance
of five meters. Thus, a very serious accident was prevented.
Further details regarding case study are presented in [29].

In the context of above study, there exist three belief states
of agents and populations that include correct, incorrect, and
unknown. For the sake of simplicity, model carries only one
interesting phenomenon against whom these belief states are
being set. This assumption is being held in original study as
well.The aim is to analyze the dynamics of overall system and
transition of agents/populations from one state to another
over the passage of time, when interagent trust is also taken
into account.

3.1. Existing Model. This section briefly covers the nomen-
clature and formulations of the existing model that is being
followed in proposed model as well.

3.1.1. Global Properties. The existing model made use of the
following six global state transition probabilities (STPs) for
ABM:

(1) p(c, i): STP from correct to incorrect belief state,
(2) p(c, u): STP from correct to unknown belief state,
(3) p(u, i): STP from unknown to incorrect belief state,
(4) p(u, c): STP from unknown to correct belief state,
(5) p(i, c): STP from incorrect to correct belief state,
(6) p(i, u): STP from incorrect to unknown belief state.

In the existing study, the PBM is modeled on the grounds
of widely used epidemic spread model for population where
each subpopulation is represented separately and their inter-
transition is modeled on the basis of transition rates. In

order to map the ABM and PBM model, differences of
respective properties in ABM model are used as state-
changing parameters in PBM model. Gamma 𝛾 represents
the transition rate and U, C, and I refer to size of population
carrying unknown, correct, and incorrect belief states. Thus,
transition rates are modeled using following equations:

𝛾 (𝑈, 𝐶) = 𝑝 (𝑢, 𝑐) − 𝑝 (𝑐, 𝑢)
𝛾 (𝑈, 𝐼) = 𝑝 (𝑢, 𝑖) − 𝑝 (𝑖, 𝑢)
𝛾 (𝐼, 𝐶) = 𝑝 (𝑖, 𝑐) − 𝑝 (𝑐, 𝑖) .

(1)

3.1.2. State Transition Rules. In ABM, rules to determine
belief state of an agent at next time point are dependent on
following inputs:

(1) agent’s own belief state at time-step t,
(2) state transition probabilities (STPs mentioned in

Section 3.1.1),
(3) belief state of communicating agent.

Whenever two agents communicate, a random number
is drawn; if its value is less than or equal to respective inter-
STP of belief states, belief state of receiver agent is updated.
Differential equations for PBM to compute population counts
against every belief state depend on the following parameters:

(1) rate of interstate transitions,
(2) population count at current time-step, against every

belief state.

The respective differential equations for population-
based model are as follows:

𝑑𝐶𝑑𝑡 = 𝑈 (𝑡) ∗ 𝐶 (𝑡) ∗ 𝛾 (𝑈, 𝐶) + 𝐼 (𝑡) ∗ 𝐶 (𝑡) ∗ 𝛾 (𝐼, 𝐶)
𝑑𝐼𝑑𝑡 = 𝑈 (𝑡) ∗ 𝐼 (𝑡) ∗ 𝛾 (𝑈, 𝐼) − 𝐶 (𝑡) ∗ 𝐼 (𝑡) ∗ 𝛾 (𝐼, 𝐶)
𝑑𝑈𝑑𝑡 = −𝐶 (𝑡) ∗ 𝑈 (𝑡) ∗ 𝛾 (𝑈, 𝐶) − 𝐼 (𝑡) ∗ 𝑈 (𝑡)

∗ 𝛾 (𝑈, 𝐼) .

(2)

In (2), C(t), I(t), andU(t) represent counts of subpopula-
tions at time-step t carrying correct, incorrect, and unknown
belief state, respectively.

3.2. Proposed Model. Trust is an individual factor and an
agent can have different trust values for all other agents in a
given environment. Trust value 0.5 is regarded as the mean
trust value of an agent. Trust value greater than 0.5 shows
higher trust and vice versa, where trust can reside in the range
of [0, 1] and is modeled as nonnegative number.

In order to map the existing model, global properties that
are used in existingABMmodel aremade local to every agent.
Thus, every agent has total of six transition probabilities along
with trust vector, carrying respective agent’s trust in all other
agents. This setup tends to provide flexibility for generating
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/∗Both Agent A and Agent B carry correct belief state ∗/
if Belief State(𝐴, 𝑡) is correct and Belief State(𝐵, 𝑡) is correct

then Belief State(𝐴, 𝑡 + 1) is correct
/∗Agent A and Agent B carry correct and incorrect belief states respectively ∗/
if Belief State(𝐴, 𝑡) is correct and Belief State(𝐵, 𝑡) is incorrect and 𝑟 <= (2 ∗ trust(𝐴, 𝐵) ∗ 𝑝(𝑐, 𝑖))

then Belief State(𝐴, 𝑡 + 1) is incorrect /∗Agent A adopts the belief state of Agent B ∗/
if Belief State(𝐴, 𝑡) is correct and Belief State(𝐵, 𝑡) is incorrect and 𝑟 > (2 ∗ trust(𝐴, 𝐵) ∗ 𝑝(𝑐, 𝑖))

then Belief State(𝐴, 𝑡 + 1) is correct /∗Agent A does not adopt the belief state of Agent B ∗/
/∗Agent A and Agent B carry correct and unknown belief states respectively ∗/
if Belief State(𝐴, 𝑡) is correct and Belief State(𝐵, 𝑡) is unknown and 𝑟 <= (2 ∗ trust(𝐴, 𝐵) ∗ 𝑝(𝑐, 𝑢))

then Belief State(𝐴, 𝑡 + 1) is unknown /∗Agent A adopts the belief state of Agent B ∗/
if Belief State(𝐴, 𝑡) is correct and Belief State(𝐵, 𝑡) is unknown and 𝑟 > (2 ∗ trust(𝐴, 𝐵) ∗ 𝑝(𝑐, 𝑢))

then Belief State(𝐴, 𝑡 + 1) is correct /∗Agent A does not adopt the belief state of Agent B ∗/
Pseudocode 1

correct incorrect

unknown

�훾(U, C) �훾(U, I)

�훾(I, C)

(a)

correct incorrect

unknown

p(i, c)

p(c, i)

p(u, c)

p(c, u)

p(u, i)

p(i, u)

p(c, c)
p(i, i)

p(u, u)

inter-agent trust

(b)

Figure 1: Interstate transition models for ABM and PBM. (a) State transition model for PBM; (b) state transition model for ABM partially
adopted from [13].

variety of homogeneous and heterogeneous populations by
means of interagent trust, transition probabilities, and com-
bination of these two.

For PBM, in order to calculate transition rate (Gamma-𝛾),
all individual transition probabilities against agents are aver-
aged, keeping overall community trust in account. Figure 1
represents overall transitions and flow involved in proposed
model. Figures 1(a) and 1(b) present the state transitions
involved in PBM and ABM, respectively. Figure 1(b) extends
the original model figure as presented in [13], where con-
nections made via dashed lines represent the extensions
in the proposed model. This section explains the interstate
transition for ABM and PBM in extended model.

3.2.1. State Transition Rules for ABM. Transition model for
agent-based communication is dependent on the belief states
of communicating entities alongwith their trust in each other.
Following pseudocode presents the scenario when agent A
with correct belief state (receiver) is receiving information
from agent B (sender). Similar code is being used when

an agent with incorrect or unknown belief state is on
receiver end. The selection of sender agent is performed via
randomly selecting any agent from the overall set of agents, as
proposed in existing model [2]. When an agent A (receiver)
communicates with agent B (sender), state transition is
governed by Pseudocode 1, where Belief State(A, t) returns
the belief state of agent A at time-step t. trust(A,B) returns
the trust of agent A on agent B, and p(x, y) represents STPs
as described in global properties of existing model. r is a
uniform random number that is drawn from range [0, 1]. In
order to keep model comparable with existing mode, factor
of 2 is being multiplied with interagent trust and inter-STP.
This computational model thus results in the formation of
original model when interagent trust between two agents is
0.5, by making the effect of trust neutral and only using the
respective inter-STP.

3.2.2. State Transition Rules for PBM. The transition equa-
tions for PBM are the same as that of the existing model.
In context of PBM, difference lies in calculation of global
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Table 1: Parameters and population settings for nominal and wishful-thinking scenarios.

Scenario Parameters for ABM𝑝(𝑢, 𝑐) 𝑝(𝑢, 𝑖) 𝑝(𝑐, 𝑢) 𝑝(𝑐, 𝑖) 𝑝(𝑖, 𝑢) 𝑝(𝑖, 𝑐)
Nominal 0.20 0.15 0.10 0.02 0.05 0.04
Wishful-thinking 0.15 0.10 0.10 0.02 0.05 0.01

Parameters for PBM Initial population distributions𝛾(𝑈, 𝐶) 𝛾(𝑈, 𝐼) 𝛾(𝐼, 𝐶) Unknown Correct Incorrect
Nominal 0.10 0.10 0.20 50% 25% 25%
Wishful-thinking 0.05 0.05 −0.01 50% ∼38% ∼12%
transition probabilities only, which are computed bymeans of
averaging transition probabilities against every agent keeping
its interagent trust into account.

𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝑈, 𝐶) = ∑𝑁𝑘=1 𝑝 (𝑢, 𝑐)𝑖𝑁 ∗ 2
∗ 𝑚𝑒𝑎𝑛 𝑡𝑟𝑢𝑠𝑡 (3)

𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝑈, 𝐼) = ∑𝑁𝑘=1 𝑝 (𝑢, 𝑖)𝑖𝑁 ∗ 2
∗ 𝑚𝑒𝑎𝑛 𝑡𝑟𝑢𝑠𝑡 (4)

𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝐶, 𝑈) = ∑𝑁𝑘=1 𝑝 (𝑐, 𝑢)𝑖𝑁 ∗ 2
∗ 𝑚𝑒𝑎𝑛 𝑡𝑟𝑢𝑠𝑡 (5)

𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝐶, 𝐼) = ∑𝑁𝑘=1 𝑝 (𝑐, 𝑖)𝑖𝑁 ∗ 2
∗ 𝑚𝑒𝑎𝑛 𝑡𝑟𝑢𝑠𝑡 (6)

𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝐼, 𝐶) = ∑𝑁𝑘=1 𝑝 (𝑖, 𝑐)𝑖𝑁 ∗ 2
∗ 𝑚𝑒𝑎𝑛 𝑡𝑟𝑢𝑠𝑡 (7)

𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝐼, 𝑈) = ∑𝑁𝑘=1 𝑝 (𝑖, 𝑢)𝑖𝑁 ∗ 2
∗ 𝑚𝑒𝑎𝑛 𝑡𝑟𝑢𝑠𝑡 (8)

𝑚𝑒𝑎𝑛 𝑡𝑟𝑢𝑠𝑡 (agent𝑖) = ∑𝑁𝑗=1 𝑡𝑟𝑢𝑠𝑡 (𝑥𝑖, 𝑥𝑗)𝑁 (9)

𝑚𝑒𝑎𝑛 𝑡𝑟𝑢𝑠𝑡 = ∑𝑁𝑖=1𝑚𝑒𝑎𝑛 𝑡𝑟𝑢𝑠𝑡 (agent𝑖)𝑁 . (10)

In (3)–(8), Global p(X,Y) refers to the STP from some
belief state 𝑋 to another belief state 𝑌, at population
level. N in this equation represents the total number of
agents/population size.mean trust(agent i) represents aver-
age trust that 𝑖th agent puts in the rest of community.
mean trust, on the other hand, represents the average trust in
overall community. p(x, y)i refers to the inter-STP, against 𝑖th
agent, from some belief state 𝑥 to belief state 𝑦, that is, local to
agent 𝑖. After calculating population level probabilities using

(3)–(8), the following set of equations are used in order to
calculate state transition rate in PBM:𝛾 (𝑈, 𝐶) = 𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝑈, 𝐶) − 𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝐶, 𝑈)

𝛾 (𝑈, 𝐼) = 𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝑈, 𝐼) − 𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝐼, 𝑈)
𝛾 (𝐼, 𝐶) = 𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝐼, 𝐶) − 𝐺𝑙𝑜𝑏𝑎𝑙 𝑝 (𝐶, 𝐼) .

(11)

In the original model, the two scenarios “nominal” and
“wishful-thinking” are presented. Nominal scenario refers
to the situation where mental states of agents and their
respective expectations from the environment are not biased.
Wishful-thinking or group thinking refers to the situation
where agents tend to incorporate incorrect beliefs in order
to fulfill their desires, as incorrect beliefs appear to be more
wishful and desirable. Existing study carries default values of
parameters against these scenarios. Default parameters and
initial population settings that are used in existing model are
presented in Table 1.

4. Experiments

Experiments conducted can be broadly classified into homo-
geneous and heterogeneous categories. In the context of
current research study, the effect of interagent trust on spread
of information is focused on; thus, the interagent trust values
act as basis for categorization.

Homogeneous population refers to population where
participating agents carry similar configurations; that is, they
are alike. In current study, in case of homogenous population,
every agent carries similar trust value for the rest of agents;
that is, trust of overall community is similar to trust of an
individual agent in any other. The original model can be
reproduced in extended model by means of homogenous
population where all agents carry mean trust value of 0.5 in
each other.

Heterogeneous environments, on the other hand, deal
with cases when agents in environment differ from each
other; that is, agents are unalike. In extended model, hetero-
geneity can be involved at various levels. It can be modeled
with respect to trust or inter-STPs or both. Major challenge
in heterogeneous population is to deal with the variety of
possibilities. For example, consider granularity of trust to be
0.1: this means that total ten possibilities can exist for trust
assignment. Now as we have total of three subpopulations of
different beliefs, if each subset of population is to be exper-
imented with various assignments of trust, total possibilities
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Table 2: Transition probabilities for PBM against different values of trust in both scenarios.

Trust Nominal scenario Wishful-thinking scenario𝛾(𝑈, 𝐶) 𝛾(𝑈, 𝐼) 𝛾(𝐼, 𝐶) 𝛾(𝑈, 𝐶) 𝛾(𝑈, 𝐼) 𝛾(𝐼, 𝐶)
0.1 0.02 0.02 0.004 0.01 0.01 −0.020
0.3 0.06 0.06 0.012 0.03 0.03 −0.060
0.5 0.10 0.10 0.020 0.05 0.05 −0.010
0.7 0.14 0.14 0.028 0.07 0.07 −0.014
0.9 0.18 0.18 0.036 0.09 0.09 −0.018

will be 103 = 1000. Consider the granularity of trust to be 0.01:
in this case total possibilities for experiments become 1003
= 1000,000. Thus, exhaustively performing all possible set of
experiments is not feasible due to huge set of possibilities. In
other words, the level of abstraction is of huge importance in
context of heterogeneous experiments.

Currently, the experiments that are conducted on het-
erogeneous population follow the same transition equations
and model as proposed in Section 3.2. There exist multiple
options to further introduce heterogeneity by means of using
distributions rather than concrete trust values or by updating
trust after agents communicate with each other. Current
study focuses on assignment of trust values, where trust can
either be low, medium, or high, as means of heterogeneity.

The rest of this section focuses on homogeneous and het-
erogeneous experiments that are carried out using extended
model. All the experiments in this study are carried out using
MATLAB.

4.1. Homogeneous Experiments. Experiments are carried out
following similar experimental setup to that described in
original model. The parameter settings described in Table 1
are employed in order to perform the experiments. Original
study tends to experiment with two population sizes: eight
and hundred, whereas simulation values are recorded up
to 250 time-steps. In addition, to avoid randomness, ABM
results are averaged over 1000 simulations for every exper-
iment performed. In the original model, the results against
eight agents (small population size) do not result in similar
behavior against both computational modeling paradigms,
whereas in case of hundred agents, both techniques generate
similar behavior, as affirmed in many studies in relevant
literature.

As the proposed model carries additional feature of
interagent trust, simulation values are recorded up to 500
time-steps in order to check for convergence of results for
ABM and PBM. Transition probabilities for both scenarios,
which are computed via proposed approach for PBM, are
presented in Table 2. To get an overall idea and for the sake
of brevity, results are being reported on lower trust value of
0.1 and higher trust value of 0.9 against both scenarios. This
section presents the experiment’s results against homogenous
population, where each color-coded graph represents time-
steps along 𝑥-axis and population size/number of agents
along 𝑦-axis. In addition, each graph carries ABM results
with solid line and PBM results with dashed line.

The proposed approach models trust as nonnegative
entity where mean trust value is 0.5. Trust value greater than
0.5 represents high trust and vice versa.Withmean trust value
of 0.5, the originalmodel can be produced using the proposed
formulation. Figure 2 shows the results generated via original
model and the proposed model. Results show that existing
model is among the subset of models that can be produced
via presented approach.

In case of both nominal and wishful-thinking scenar-
ios, for smaller population size, ABM and PBM do not
approach each other, whereas, for larger population sizes,
the dynamics of ABM and PBM represent similar behavior.
Thus, the hypothesis carried from original study regarding
dynamics of ABM and PBM with respect to population sizes
is verified. Figure 3 presents the results of both computational
techniques against nominal scenario with population sizes
of eight and hundred, along with trust value of 0.1 and 0.9.
Figure 4 focuses on the results achieved, when proposed
model is used in wishful-thinking scenario.

One thing to note in homogenous population results is
that PBM trend remains almost consistent in small popula-
tion size as well as large population size. ABM dynamics, on
the other hand, gets heavily affected by the total population
size. The comparative study shows that for large population
sizes, ABM tends to approximate the results of PBM, where
PBM is very efficient and its dynamics are independent of the
population size. On the contrary, computational complexity
of ABM increases with the number of agents. Thus, in order
to model small population size, PBM cannot be used if
individual’s biases are to be taken into account.

In addition to these insights, results also show that if trust
community has high trust factor, agents having unknown
belief state tend to adopt the correct/incorrect belief states,
depending on the scenarios and transition rates, quite quickly.
On the other hand, in case of low trust, the transition from
unknown to correct/incorrect state takes relatively longer
time. The primary hypothesis regarding this study about
relation with SA and trust is thus confirmed.

4.2. Heterogeneous Experiments. Heterogeneous experi-
ments are also conducted on the settings presented in
Table 1. In order to conduct the experiments, trust is
categorized into three groups, low, medium, and high, with
values of 0.1, 0.5, and 0.9, respectively. The reason for hard-
codifying the value is to have ease in analysis of results. In
the current set of conducted experiments, a trust value being
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Figure 2: Comparison of original and proposed model with mean trust value of 0.5 and 100 population size. (a) Nominal scenario in existing
model; (b) nominal scenario in proposed model; (c) wishful-thinking scenario in existing model; (d) wishful-thinking scenario in proposed
model.

either low, medium, or high is assigned to subpopulation
carrying a particular belief.

Total of twenty-seven configurations are possible using
current experiment settings. After conducting all experi-
ments against both scenarios, resulting graphs were firstly
analyzed visually in order to look for patterns. Later
averaged root mean square error (RMSE) was calcu-
lated against all belief states using temporal simulation
traces of PBM and ABM for every experiment using
(12). In these equations, N represents total number of
agents/population size. The overall trend of RMSE in both

scenarios and values against all configurations are provided in
Appendix A.

RMSECorrect = √∑𝑁𝑖=1 (PBMcorrect𝑖 − ABMcorrect𝑖)2𝑁
RMSEIncorrect

= √∑𝑁𝑖=1 (PBMIncorrect𝑖 − ABMIncorrect𝑖)2𝑁
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Figure 3: Dynamics in “nominal” scenario against low and high trust values with different population sizes. (a) Trust = 0.1, population size
= 8; (b) trust = 0.1, population size = 100; (c) trust = 0.9, population size = 8; (d) trust = 0.9, population size = 100.

RMSEUnknown

= √∑𝑁𝑖=1 (PBMUnknown𝑖 − ABMUnknown𝑖)2𝑁
AverageRMSE

= RMSECorrect + RMSEIncorrect + RMSEUnknown3 .
(12)

As affirmed in homogenous experiments, both ABM and
PBM almost produce similar trends over the time. As total

of these 27 configurations consist of three homogenous pop-
ulations as well, the RMSE among homogenous populations
was minimum compared to the rest.Thus, it further validates
our experiment assumption that ABMand PBM show similar
trends in homogenous populations.

An interesting finding in the light of visually analyzing
results and by means of error function is that “almost
homogeneous populations” also perform well in both sce-
narios. One intuition for this can be the similarity between
these populations and homogenous populations. As these
configurations are very close to homogenous configurations,
respective results are better than the rest as shown in Figure 5.
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Figure 4: Dynamics in “wishful-thinking scenario” against low and high trust values with different population sizes. (a) Trust = 0.1, 𝑁 = 8;
(b) trust = 0.1,𝑁 = 100; (c) trust = 0.9,𝑁 = 8; (d) trust = 0.9,𝑁 = 100.

These cases are best performers after homogenous popula-
tions. Details of overall RMSE results against twenty-seven
scenarios up to 500 time-steps are shared in Appendix A.
Figure 5(a) presents the system where trust configurations
are HMM; that is, unknown community has high trust
whereas correct and incorrect communities have medium
trust in the overall community. The configuration is coded
in the order unknown, correct and incorrect. Similarly,
Figure 5(b) presents the scenario when unknown and correct
communities place high trust whereas incorrect community
places medium trust in the overall population.

The only exception to the above observation is when
unknown community has low trust in the rest. If the net
transitions in the model are analyzed, it gets clear that
unknown community ends up opting either incorrect or
correct belief states as represented in Figure 1(a). Now, if
unknown community has low trust in the rest, in case
of ABM, the resulting transitions would be quite slow in
comparison to PBM. Due to this slow convergence in ABM,
the difference between ABM and PBM is increased, though
eventually they either converge to each other or make an
asymptote. Figure 6 presents the scenarios where unknown
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Figure 5: Results against almost homogenous populations for both scenarios. (a) HMM case against “nominal scenario”; (b) HHM case
against “wishful-thinking scenario.”
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Figure 6: Results against both scenarioswhere unknownpopulation has low trust in the community. (a) LHL case against “nominal scenario”;
(b) LLH case against “wishful-thinking scenario.”

community has low trust in others. Population configurations
presented in Figure 6 include LHL in case of nominal sce-
nario that carries the highest RMSE in comparison to other
configurations; for wishful-thinking scenario, LLH case is
included, that is, the third most erroneous configurations in
terms of RMSE.

If both scenarios are analyzed closely, it is evident that
nominal scenario favors correct belief spread and eventually

majority of population will end up opting correct belief
whereas wishful-thinking scenario favors incorrect belief and
eventually population will carry incorrect belief. These final
states can be regarded as sink. Next pattern that is observed
in conducted experiments highlights the effect of low trust
on sink community. Hypothesis in this regard is that as
the eventual state to converge is the same as that of sink
and additionally sink community has low trust in others,
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Figure 7: Results against both scenarios where SINK has low trust in the community. (a) HLM case against “nominal scenario”; (b) HML
case against “wishful-thinking scenario.”
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Figure 8: Results against both scenarios against similar configuration of trust. (a) LHH case against “nominal scenario”; (b) LHH case against
“wishful-thinking scenario.”

transition from sink to others would be very slow. Thus,
earlier convergence will happen in case of ABM than in that
of PBM, and overall differences would be less. Consequently,
results would be better matched and overall error will be
reduced. Figure 7 presents the results when sink has low trust,
where correct and incorrect belief states are sinks in nominal
and wishful-thinking scenarios, respectively.

Figure 8 presents the trends against both scenarios in
a similar case. As both scenarios have different sinks, the
configuration selected for comparison is the one with similar
trust for both correct and incorrect populations. In case of
nominal scenario, ABM and PBM tend to approach each
other earlier than that of wishful-thinking scenario. One
hypothesis in this regard is that wishful-thinking scenario
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Figure 9: Asymptotes formation in both scenarios. (a) LHL case against nominal scenario; (b) LLH case against wishful-thinking scenario.

has lower inter-STP than nominal scenario as presented in
Table 1.

Another offshoot of low inter-STPs is that, in some
particular cases, where unknown community puts low trust
in others, not all population eventually transit towards sink.
This is because, due to lower interstate STP, the transition
rate among states already gets low. In addition, as the major
community that is to be transited to other communities (i.e.,
the unknown population) also has lower trust in population,
resulting transition rate would be very low. Due to their
resultant affect, the whole population does not end up
following the same belief. Thus, asymptotes are formed as
represented in Figure 9. Here, in this particular experiment,
simulation values are recorded up to 5000 time-steps in order
to present the dynamics of the overall systemmore clearly and
precisely.

In the light of the above points, one can clearly analyze the
power of ABM in contrast to PBM. Both ABM and PBM tend
to model the effect of inter-STPs as reported in Appendix B.
Apart from that, PBM tends to model various configurations
in a similar way, whereas ABM gets affected by the individual
agent’s biases towards the system in terms of both transition
rate and trust as reported in Appendix A. Thus, ABM has
the capability to model the dynamics of system taking into
account agents’ local properties and biases. PBM, on the other
hand, tends to model phenomenon at quite abstract level.
Which one of them is really true in real world can only be
determined by empirical validation.

5. Conclusion and Future Work

In this study, comparison of two widely used approaches
to model multiagent systems (MAS) is performed, namely,

agent-based modeling (ABM) and population-based model-
ing (PBM). ABM is assumed to be more realistic and insight-
ful as it has capability to model individual level characteris-
tics, but due to this very reason, it is computationally expen-
sive. PBM is usually employed to analyze global insights, and
thus it is computationally efficient as it is independent of
population size. Regarding these two modeling approaches,
there is a prevailing assumption inMAS community that both
approaches present similar dynamics for large population.
Therefore, it is of interest to determine whether or not these
twomodeling approaches present similar dynamics in case of
large population size.

In order to perform the comparative study, trust-based
situation awareness was modeled by means of extending
an existing study from literature. This existing study also
performs comparative evaluation of these approaches and
concludes that both approaches present similar dynamics if
population size is large. This study models the spread of
situation awareness (SA) within a group of agents. As trust
is among primary factors that can affect SA spread, current
study extends this model to incorporate interagent trust, thus
proposing formulation for trust-based SA through bothABM
and PBM approaches.

To compare ABM and PBM, experiments are conducted
using homogenous and heterogeneous populations with
respect to interagent trust factor. Results show that, in case
of homogenous population, both approaches present similar
dynamics when population size is large as affirmed in existing
literature studies.

Heterogeneous experiments’ dynamics, on the other
hand, are sensitive to initial trust assignments as well as com-
munity wide trust distributions. Thus, dynamics exhibited
by both approaches in heterogeneous populations tend to
vary with respect to parameter configurations. In various
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Table 3: RMSE against all configurations for both scenarios.

Trust distribution Nominal scenario Wishful-thinking scenario
Unknown Correct Incorrect Mean trust RMSE Mean trust RMSE
L L L 0.1 0.8688 0.1 0.5521
L L M 0.2 6.5583 0.148 16.3115
L L H 0.3 7.3172 0.196 24.518
L M L 0.2 22.2928 0.252 16.7516
L M M 0.3 13.2705 0.3 16.3012
L M H 0.4 12.278 0.348 24.0071
L H L 0.3 33.7182 0.404 17.2442
L H M 0.4 20.8549 0.452 18.6414
L H H 0.5 18.6118 0.5 24.3485
M L L 0.3 6.0913 0.3 9.6563
M L M 0.4 4.4084 0.348 19.854
M L H 0.5 4.3772 0.396 25.752
M M L 0.4 10.1467 0.452 6.7352
M M M 0.5 0.5007 0.5 1.5256
M M H 0.6 1.6807 0.548 6.5738
M H L 0.5 13.0625 0.604 8.0953
M H M 0.6 3.5929 0.652 3.7707
M H H 0.7 1.9148 0.7 3.9007
H L L 0.5 8.1663 0.5 16.032
H L M 0.6 3.2983 0.548 23.3535
H L H 0.7 3.9246 0.596 27.1409
H M L 0.6 10.6268 0.652 4.5747
H M M 0.7 1.0245 0.7 2.7398
H M H 0.8 1.4448 0.748 5.7717
H H L 0.7 12.0641 0.804 6.0571
H H M 0.8 2.2877 0.852 2.2345
H H H 0.9 0.3569 0.9 1.0679

scenarios, both approaches exhibit dynamics that are dif-
ferent in the start of simulation but eventually converge to
each other. Moreover, some of the input configurations result
in equilibrium state with respect to the number of agents
against each modeling approach, but both approaches do not
converge to each other. Thus, it could be concluded that, for
trust-based SA, these approaches do not behave alike when
population is heterogeneous.

Therefore, this study deserves further empirical work to
validate which one of these approaches performs better in
reality for trust-based SAmodels. If it is empirically validated
that ABM’s dynamics are closer to reality, then community
should focus on the efficient implementation ofABMmodels.
On the other hand, if PBM’s results are found to be more
realistic, then community should focus on developing and
extending existing PBM models which carry additional
advantage of being computationally efficient as well. After
determination of empirically validated modeling approach,
the respective model can be extended to incorporate further
related concepts such as group hierarchy in subpopulations.
Additionally, state transition rules can also be updated in
order to model relatively more realism for trust-based SA.

Appendix

A. Root Mean Square Errors

This section is focused on results of root mean square
error (RMSE) against heterogeneous populations. RMSE is
used in order to compare the results of ABM and PBM
against similar trust distributions. As total of twenty-seven
configurations are possible, Table 3 lists the RMSE against
every configuration for both scenarios along with mean
trust. Mean trust represents the average trust of the whole
community against every configuration that is primarily used
in the formulation of PBM dynamics. Table entries are made
in the chronological order with respect to trust configuration.

By closely analyzing the trend of RMSE in Table 3, it
is quite evident that for various trust distributions mean
trust remains the same; for example, the configurations
LHH, MMM, and HLL all result in mean trust value of 0.5
with different RMSEs against both scenarios. Dynamics for
configurations that result in mean trust value of 0.5 against
both scenarios are presented in Figure 10 (entries in boldface
in Table 3). Each color-coded figure represents dynamics
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Figure 10: Dynamics in various configurations that result in similarmean trust against PBM against both scenarios. (a) LHH case in nominal;
(b) MMM case in nominal; (c) HLL case in nominal; (d) LHH case in wishful-thinking; (e) MMM in wishful-thinking; (f) HLL in wishful-
thinking.

exhibited by PBM with dashed lines whereas results against
ABM are represented with solid lines.

As it is evident in Figure 10, various population config-
urations exhibit similar behavior in case of PBM, whereas
trends vary in case of ABM depending upon the population
distribution.This is because unlike PBM, ABMhas the ability
to incorporate and eventually project the dynamics of system,
keeping agents’ properties and biases in account.

B. Effect of Transition Rates

State transition rate probabilities (STPs) play a significant
role in terms of convergence. The higher the STP is, the
faster the convergence will happen. In order to analyze the
effect of transition rate in the proposedmodel, an experiment
was carried out. In this experiment, traces are generated
against nominal and wishful-thinking scenarios with their
default transition rates as well as with the updated transition
rates reduced by 50%. Figure 11 represents the trends when
normal and reduced transition rates are employed against
MLM configuration, that is, a configuration where unknown

population have medium trust, correct population have low
trust, and incorrect population have medium trust in the
rest of the community. Figures 11(a) and 11(b) represent
the trends in nominal scenario when original and reduced
STPs are employed whereas Figures 11(c) and 11(d) show
the trends in wishful-thinking scenario with original and
reduced transition rates. Each color-coded figure represents
dynamics exhibited by PBMwith dashed lineswhereas results
against ABM are represented with solid lines.

If we analyze Figures 11(a) and 11(b), it is evident that
dynamics in (a) tends to converge after approximately 250
time-steps, whereas dynamics exhibited in (b) show conver-
gence after 500 time-steps approximately.Thus, both systems
represent similar dynamics, with the primary difference of
respective time required. Similar behavior is presented in
Figures 11(c) and 11(d). In these figures, simulations are
recorded up to 5000 time-steps in order to provide clear idea
about the overall dynamics of the system. If we analyze the
trend of PBM curve for correct population (one in red and
represented via dashed line) in both figures, it is clear that
in (c) respective curve gets to zero after approximately 1000
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Figure 11: Results against both scenarios against reduced transition rates. (a) MLM case against “nominal scenario” with original transition
rates; (b) MLM case against “nominal scenario” with reduced transition rates; (c) MLM case against “wishful-thinking scenario”; (d) MLM
case against “wishful-thinking scenario” with reduced transition rates.

time-steps, whereas in (d) it takes almost double the time, that
is, approximately 2000 time-steps to get a similar result.Thus,
in the light of the above points, we can say that transition rate
affects the overall convergence in the context of both ABM
and PBM.
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