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Abstract 

 
Within Criminology, the process of crime 

displacement is usually explained by referring to the 
interaction of three types of agents: criminals, passers-
by, and guardians. Most existing simulation models of 
this process are agent-based. However, when the 
number of agents considered becomes large, 
population-based simulation has computational 
advantages over agent-based simulation. This paper 
presents both an agent-based and a population-based 
simulation model of crime displacement, and reports a 
comparative evaluation of the two models. In addition, 
an approach is put forward to analyse the behaviour of 
both models by means of formal techniques. 
 
 
1. Introduction 
 
 Within Criminology one of the main research 
interests is the emergence of so-called criminal hot 
spots. These hot spots are places where many crimes 
occur [14]. After a while the criminal activities shift to 
another location, for example, because the police has 
changed its policy and increased the numbers of 
officers at the hot spot. Another reason may be that the 
passers by move away when a certain location gets a 
bad reputation. Such a shift between locations is called 
the displacement of crime. The reputation of specific 
locations in a city is an important factor in the spatio-
temporal distribution and dynamics of crime [8]. For 
example, it may be expected that the amount of 
assaults that take place at a certain location affect the 
reputation of this location. Similarly, the reputation of 
a location affects the attractiveness of that location for 
certain types of individuals. For instance, a location 
that is known for its high crime rates will attract police 
officers, whereas most citizens will be more likely to 
avoid it. As a result, the amount of criminal activity at 

such a location will decrease, which will affect its 
reputation again.  
 The classical approaches to simulation of processes 
in which groups of larger numbers of agents and their 
interaction are involved are population-based: a 
number of groups is distinguished (populations) and 
each of these populations is represented by a numerical 
variable indicating their number or density (within a 
given area or location) at a certain time point. The 
simulation model takes the form of a system of 
difference or differential equations expressing temporal 
relationships for the dynamics of these variables. Well-
known classical examples of such population-based 
models are systems of difference or differential 
equations for predator-prey dynamics (e.g., [10], [15], 
[5], [11], [16]) and the dynamics of epidemics (e.g., 
[1], [5], [7], [9], [12]). Such models can be studied by 
simulation and by using analysis techniques from 
mathematics and dynamical systems theory.  
 From the more recently developed agent system area 
it is often taken as a presupposition that simulations 
based on individual agents are a more natural or 
faithful way of modelling, and thus will provide better 
results (e.g., [2], [6], [13]). Although for larger 
numbers of agents such agent-based modelling 
approaches are more expensive computationally than 
population-based modelling approaches, such a 
presupposition may provide a justification of preferring 
their use over population-based modelling approaches, 
in spite of the computational disadvantages. However, 
for larger numbers of agents (in the limit), agent-based 
simulations may equally well approximate population-
based simulations. In such cases agent-based 
simulations just can be replaced by population-based 
simulations. In this paper, for the application area of 
crime displacement these considerations are explored 
in more detail. Comparative simulation experiments 
have been conducted based on different simulation 
models, both agent-based (for different numbers of 
agents), and population-based. The results are analysed 
and related to the assumptions discussed above. 



 This paper is organised as follows. First, Section 2 
introduces the population based model which has been 
defined for this domain. Thereafter, this model is 
mathematically analysed in Section 3, and simulation 
results are presented in Section 4. Section 5 introduces 
the agent-based model of which simulation results are 
shown in Section 6. A comparison of the two different 
models by means of a formal analysis method is 
described in Section 7. Finally, Section 8 is a 
discussion. 
 
2. A population-based model 
 
 In this section the population-based model is 
defined. Hereby, a number of variable names are used 
as shown in Table 1. 
 

Table 1. Variables in population-based model 
 

Name Explanation 
C Total number of criminals  
G Total number of guardians  
P Total number of passers by  
c(L, t) Density of criminals at location L at time t. 
g(L, t) Density of guardians at location L at time t. 
p(L, t) Density of passers-by at location L at time t. 
β(L, a, t) Attractiveness of location L at time t for type a 

agents: c (criminals), p (passers-by), or g 
(guardians)) 

assault_rate(L, t) Number of assaults taking place at location L 
per time unit. 

 
 The calculation of the number of agents at the 
various locations is done by determining the movement 
of agents that takes place based upon the attractiveness 
of the location. For instance, for the criminals the 
formula is specified as follows: 
 

c(L, t + 
�

t) =  c(L, t)  +  � 1 �  (β(L, c, t) - c(L, t)/ c) 
�

t 
 

This expresses that the density c(L, t + 
�

t) of criminals at 
location L on t + � t is equal to the density of criminals 
at the location at time t plus a constant � 1 (expressing 
the rate at which criminals move per time unit) times 
the movement of criminals from t to t+∆t from and to 
location L multiplied by � t. Here, the movement of 
criminals is calculated by determining the relative 
attractiveness β(L, c, t) of the location (compared to the 
other locations) for criminals. From this, the density of 
criminals at the location at time t divided by the total 
number c of criminals (which is constant) is subtracted, 
resulting in the change of the number of criminals for 
this location. For the guardians and the passers-by 
similar formulae are used: 
 

g(L, t + 
�

t) =  g(L, t)  +  � 2 �  (β(L, g, t) - g(L, t)/ g) 
�

t 
p(L, t + 

�
t) =  p(L, t)  +  � 3 �  (β(L, p, t) - p(L, t)/ p) 

�
t 

 

The attractiveness of a location can be expressed 
based on some form of reputation of the location for 
the respective type of agents. Several variants of a 
reputation concept can be used. The only constraint is 

that it is assumed to be normalized such that the total 
over the locations equals 1. An example of a simple 
reputation concept is based on the densities of agents, 
as expressed below. 
 

β(L, c, t)  =  p(L, t) / p for criminals 
β(L, g, t)  =  c(L, t) / c for guardians 
β(L, p, t)  =  g(L, t) / g for passers-by 

 

This expresses that criminals are more attracted to 
locations with higher densities of passers-by, whereas 
guardians are attracted more to locations with higher 
densities of criminals, and passers-by to locations with 
higher densities of guardians. As a more general 
format, linear combinations of densities can be used: 
 

β(L, p, t)   =  β11 �  c(L, t) / c + β12 �  g(L, t) / g +  

           β13 �  p(L, t) / p + � 1 

β(L, c, t)   =  β21 �  c(L, t) / c + β22 �  g(L, t) / g + 

           β23 �  p(L, t) / p + � 2 

β(L, g, t)  =  β31 �  c(L, t) / c + β32 �  g(L, t) / g + 

           β33 �  p(L, t) / p + � 3 
 

A natural setting of these values for criminals would 
be to have β23 positive since criminals need victims to 
assault, and to have β22 negative because criminals try 
to avoid guardians. For the guardians, β31 is likely to be 
positive since criminals attract guardians, whereas β32 is 
positive as well. Finally, for the passers-by the β11 can 
be taken negative as passers-by prefer not to meet 
criminals, and β12 (and possibly also β13) positive 
because guardians (and other passers-by) protect the 
passers-by. Besides such linear variants, more complex 
variants can be used in the simulation model presented 
here as well. 
 In order to measure the assaults that take place per 
time unit, also different variants of formulae can be 
used; for example: 
 

assault_rate(L, t) = min(� 1�  c(L, t) - � 2 �  g(L, t), p(L, t)) 
 

Here, the assault rate at a location at time t is 
calculated as the minimum of the possible assaults that 
can take place and the number of passers-by. Here the 
possible number of assaults is the capacity per time 
step of criminals (� 1) multiplied by the number of 
criminals at the location minus the capacity of 
guardians to avoid an assault (� 2) times the number of 
guardians. In theory this can become less than 0 (the 
guardians can have a higher capacity to stop assaults 
than the criminals have to commit them), therefore the 
maximum can be taken of 0 and the outcome described 
above. 
 
3. Analysis of population-based model 
 

Before performing simulations using the population-
based model, a formal analysis is conducted to identify 
certain characteristics of the model. To obtain such a 
formal analysis, it is assumed that the attractivenesses 



of a given location are linear functions of the densities 
of the different populations at that location, as 
described in Section 2. When the densities are 
normalised by taking, for example cn(L, t) = c(L, t)/c 

instead of c(L, t), then the following (homogeneous) 
system of linear differential equations is obtained. 
 

  =  η11 cn(L, t) + η22 gn (L, t) + η23 pn(L, t) 

  =  η21 cn(L, t) + η22 gn(L, t) + η23 pn(L, t) 

  = η31 cn(L, t) + η12 gn(L, t) + η33 pn(L, t) 
 

So pn(L, t) et cetera denote the fraction of the overall 
population p that is at location L at time t. In linear 
algebra notation this system can be written as dx/dt = 
Ax, with A represented by a 3x3 matrix: 
 

 
� � �

� � �

� � �
 

 

Equilibria can be found by the system of linear 
equations Ax = 0: 
 

η11 cn(L, t) + η12 gn(L, t) + η13 pn(L, t) = 0 
η21 cn(L, t) + η22 gn(L, t) + η23 pn(L, t) = 0 
η31 cn(L, t) + η32 gn(L, t) + η33 pn(L, t) = 0 

 

Behaviour around an equilibrium can be analysed by 
determining the eigen values of matrix A as follows. 
The eigen value equation is the determinant of the 
matrix A - λI which is: 
 

 
� � � �

� � � �

� � � �
 

This equation is: 
 

- (λ-η11) (λ-η22) (λ-η33)
  + η12η23η31 + η21η32η13 -  (- η31η13(λ-

η22) - η12η21(λ-η33)-η23η32(λ-η11)) 
=  - (λ-η11) (λ-η22) (λ-η33)  +  (η31η13(λ-η22) + η12η21(λ-η33) + 

η23η32(λ-η11)) + η12η23η31 + η21η32η13 
=  - λ3  + (η11+η22+η33) λ2 +  

( -(η11η22+η22η33+η33η11)+ (η31η13 + η12η21+η23η32) ) λ +  
(η11η22η33 - (η31η13η22 + η12η21η33+η23η32η11) + η12η23η31 + 
η21η32η13 

=  - λ3 + bλ2+ c λ+d  
 

with 
 

b = (η11+η22+η33) 
c =  (η31η13 + η12η21+η23η32) -  (η11η22+η22η33+η33η11) 
d =  η11η22η33 - (η31η13η22 + η12η21η33+η23η32η11) +  

η12η23η31 + η21η32η13 
 

In general it is not easy to express how the eigen 
values depend on the many parameters involved. 
However, for the special case that criminals are (only) 
attracted to passers-by, guardians are attracted to 
criminals and passers by are attracted to guardians, a 
number of the parameters can be taken zero, or equal: 
 

η12 = 0  η13 = -η11   
η21 = -η22 η23 = 0  
η31 = 0  η32 = - η33 

A  =  
� �

� �

� �
 

 

Note that η11, η22, η33 are negative here. An equilibrium 
is determined by 
 

η11 cn(L, t) - η11 pn(L, t) = 0 
η22 gn(L, t) - η22 cn(L, t) = 0 
η33 pn(L, t) - η33 gn(L, t) = 0 

 

This is equivalent to  pn(L, t) = cn(L, t) = gn(L, t). The eigen 
values can be determined by the equation: - λ3 + bλ2+ c 
λ+d with 
 

b = η11+η22+η33 
c =  - (η11η22+η22η33+η33η11) 
d =  0 

 

For this equation one eigen value is λ = 0, and the other 
two are the solutions of the quadratic equation 
 

      λ2 - (η11+η22+η33)λ + (η11η22+η22η33+η33η11) = 0  
      λ = ( (η11+η22+η33)  
             +/- √(η11+η22+η33)

2 - 4 (η11η22+η22η33+η33η11))/2 
 

When the square root gives real numbers (positive 
discriminant), then both solutions will be negative, as 
the root is less than |η11+η22+η33|. When the square root 
gives imaginary numbers (negative discriminant), the 
real part of both solutions will be negative. In all cases 
attraction to the equilibrium will take place, in the first 
case monotonic, in the second case nonmonotonic. 
Hence, given the set of assumptions as described 
above, the model will eventually stabilise. 
 
4. Population-based simulations 
 

The model described in Section 2 and analysed in 
Section 3 has been used to generate simulation results. 
(using the Matlab programming environment). Hereby, 
the functions that represent the attractiveness of 
different locations have been varied. 
 
4.1. Simple attractiveness function 
 

In this section the results using the simple 
attractiveness function presented in Section 3 are 
shown. The simulation results described below used 
the parameter settings as shown in Table 2 and 3. The 
settings of the parameters that correspond to the 
number of passers-by, criminals, and guardians have 
been determined in cooperation with a team of 
criminologists.  

The resulting simulation trace is depicted in Figure 
1. The first three graphs depict the movement of, 
respectively, criminals, guardians and passers-by over 
the different locations. The last graph depicts the 
amount of assaults performed. 

 

 



Table 2. Parameter settings 
 

 

SIMULATION LENGTH 100 
LOCATIONS 4 
PASSERS-BY 4000 
CRIMINALS 800 
GUARDIANS 400 
β 1 �

 0.5 �
t 0.1 

 

 
Table 3. Population distribution  

 

 L1 L2 L3 L4 
PASSERS-BY 1500 500 750 1250 
CRIMINALS 300 100 250 150 
GUARDIANS 50 150 125 75 

 
As shown in Figure 1, from the beginning of the 

simulation many passers-by move away from location 
1 (where there are many criminals and few guardians), 
and towards location 2 (where there are many 
guardians and few criminals). The guardians follow the 
opposite pattern: they move away from location 2, and 
towards location 1. As soon as the number of guardians 
at location 1 has increased, this location becomes more 
attractive for the passers-by. The criminals first move 
away from location 1, towards location 2, but as soon 

as the passers-by come back to location 1, a significant 
part of the criminals stays there. Eventually, all 
populations stabilise as expected after the 
mathematical analysis of the model. The total 
computational time needed to generate the results 
shown is less than one second. Besides this particular 
run, runs with different settings of parameters (not 
determined by criminologists) such as the value of 

�
, � , 

and � t have been conducted as well. Thereby similar 
trends are observed as shown in the graphs in Figure 1. 
 
4.2. Complex attractiveness function 
 

In addition, simulation runs have been generated 
with more complex attractiveness functions, namely 
the following: 
 

β(L, c, t)  =  0.5 * p(L, t) / p + 0.5 * (1 - p(L, t) / p) 
β(L, g, t)  =  c(L, t) / c  
β(L, p, t)  =  1 - c(L, t) / c 

 

Again, the parameters shown in Table 2 and 3 have 
been used. The simulation results are shown in Figure 
2. The figure shows the same trends (namely an 
equilibrium) as have been observed before, except that 
the precise distribution of the various agent types is 
slightly different. 
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Figure 1. Population-based model - simulation results with simple function 



5. An agent-based model 
 

In this section the agent-based model is defined and 
simulation results thereof are presented. Hereby, the 
same variable names are used as shown in Table 1. 

For the agent-based model, the following algorithm 
is used (implemented in C++): 

 

1. initialise all agents on locations 
2. for each time step repeat the following 

a. calculate the density of each type of agent p(L, t), c(L, t), g(L, 
t) at all locations and communicate it to all agents. 

b. each agent calculates the attractiveness of a location 
depending on its type (passers-by, criminals, and guardians) 
for all locations using the following formulae (i.e. similar to 
those used in the population-based model): 

β(L, c, t)  =  p(L, t) / p  for criminals 
β(L, g, t)  =  c(L, t) / c  for guardians 
β(L, p, t)  =  g(L, t) / g  for passers-by 

c. �  % of the agents of each type is selected at random to 
decide whether the agent moves to a new location or stay at 
the old one 

d. the selected agents move to a location with a probability 
proportional to the attractiveness of the specific location 
(i.e. a selected agent has a higher probability of moving to a 
relative attractive location than to a non-attractive one). 

5.1. Simple attractiveness function 
 
 The results using this agent-based model with the 
same parameters as the population based model with 
simple attractiveness function are shown in Figure 3. 
The figure shows the averages over 100 runs of the 
agent based model. Hereby, the agent-based model 
requires a total computation time of 16.39 seconds. It 
can be seen that the trends and even the number of 
agents at the various locations are very closely related. 
A maximum deviation between the number of agents 
of around 2% is seen. These differences are the result 
of the fact that agents can only move as a whole, 
whereas in the population based model real numbers 
are used to represent the densities of agents. 
 
5.2. Complex attractiveness function 

 
 The results using the more complex attractiveness 
function with the same parameter settings as used in 
Section 4.2 are shown in Figure 4. The results are in 
accordance with those of the population-based model. 
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Figure 2. Population-based model - simulation results with complex function 
 



 
6. Formal evaluation 
 
 In this section, a number of dynamic properties of 
the displacement of crime are formalised in the 
Temporal Trace Language TTL [3], and checked 
against the simulation traces. This predicate logical 
temporal language supports formal specification and 
analysis of dynamic properties, covering both 
qualitative and quantitative aspects. TTL is built on 
atoms referring to states of the world, time points and 
traces, i.e. trajectories of states over time. In addition, 

dynamic properties are temporal statements that can be 
formulated with respect to traces based on the state 
ontology Ont in the following manner. Given a trace γ 
over state ontology Ont, the state in  γ at time point t is 
denoted by state(γ, t). These states can be related to state 
properties via the formally defined satisfaction relation 
denoted by the infix predicate |=, comparable to the 
Holds-predicate in the Situation Calculus: state(γ, t) |= p 
denotes that state property p holds in trace γ at time t. 
Based on these statements, dynamic properties can be 
formulated in a formal manner in a sorted first-order 
predicate logic, using quantifiers over time and traces 

Figure 3. Agent-based model - simulation 
results with simple function 
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Figure 4. Agent-based model - simulation 
results with complex function 



and the usual first-order logical connectives such as ¬, 
∧, ∨, �, ∀, ∃. A dedicated software environment has 
been developed for TTL, featuring both a Property 
Editor for building and editing TTL properties and a 
Checking Tool that enables formal verification of such 
properties against a set of (simulated or empirical) 
traces. 
 For the current domain, a number of hypotheses 
have been expressed as dynamic properties in TTL. For 
example, consider the following dynamic property 
(P1a), which expresses that the number of criminals at 
a certain location is persistent. 
 

P1(Criminals) - 
Stable number of criminals at locations 
There is a time point t such that for each time point t1 and t2 after t and for all 
locations l, if at t1 there are x criminals at location l and at t2 there are x2 
criminals at location l, then the difference between x and x2 is smaller than � % 
of the total amount of criminals. 
∃t:TIME ∀t1,t2:TIME ∀l:location ∀x,x2:real 
   [t1>t & t2>t & 
   state(γ, t1) |= agents_of_type_at_location(x, criminal, l) & 
   state(γ, t2) |= agents_of_type_of_location(x2, criminal, l) 
   � abs(x-x2) � c*α/100] 
 

 This property (as well as the properties below) has 
been checked against the traces generated by both 
simulation models. In particular, they have been 
checked them against four traces: trace1 (i.e., the 
population-based trace that was shown in Section 4), 
trace2 (which is an average trace over 100 simulation 
runs of the agent-based model of Section 5), trace3 
(i.e., the population-based trace based on the complex 
attractiveness function), and trace4 (an average trace 
over 100 simulation runs of the agent-based model 
based on the complex attractiveness function). Some 
results of this check are shown in Table 4. It was 
found, among others, that for an �  of 1.0 (i.e. 1%) 
stabilisation of criminals occurs at time point 35 in 
trace1, at time point 65 in trace2, at t.p. 51 in trace3, 
and at t.p. 54 in trace4 (see first column).Similar 
properties have been checked for passers-by and 
guardians. Thus, in all traces eventually a stable 
situation occurs, but the moment at which this occurs is 
a bit later in the agent-based traces. This is due to the 
fact that the agent-based model works with natural 
numbers instead of real numbers, which causes a 
rounding error (as explained in the Section 5.1).  
 

Table 4. Checking results of property P1. 
 

 Criminals Passers-by Guardians 
trace1 35 38 28 
trace2 65 56 50 
trace3 51 41 68 
trace4 54 47 76 

 

 Besides checking whether the number of agents is 
persistent per location, also other properties can be 
verified. For example, it can be checked what the point 

of equilibrium is. To analyse this, properties like the 
following have been established: 
 

P2 - 
Equal percentage of different agents per location 
For each location l, for the three different agent types, the number of agents of 
that type at the location divided by the overall population of that agent type is 
the same, namely r. 
∀l:location ∃r:REAL ∀x1,x2,x3:real 
   [ state(γ, last_time) |= agents_of_type_at_location(x1, criminal, l) &  
     state(γ, last_time) |= agents_of_type_at_location(x2, passer-by, l) &  
     state(γ, last_time) |= agents_of_type_at_location(x3, guardian, l) 
     � r = x1/c±β = x2/p±β = x3/g±β ] 
 

For a 
�

 of 0.01 this property indeed turned out to be 
true. Table 5 indicates the values for r that were found 
for the different locations, for all four traces. Note the 
small differences between trace 1 and 2, which is due 
to the rounding error mentioned above. 
 

Table 5. Checking results of property P2. 
 
 Location 1 Location 2 Location 3 Location 4 
trace1 0.29 0.21 0.27 0.23 
trace2 0.31 0.21 0.27 0.21 
trace3 0.25 0.25 0.25 0.25 
trace4 0.25 0.25 0.25 0.25 

 

 Finally, a number of properties have been specified 
to investigate whether the spread of agents of a certain 
kind over the locations is equal (illustrated here for 
criminals): 
 

P3(Criminals) - 
Equal spread of criminals over locations 
There is a time point t such that for all time points t1 after t for all locations l, 
the amount of criminals at l is within a range of δ of the total amount of 
criminals c divided by the number of locations NL. 
∃t:TIME ∀t1:TIME ∀l:location ∀x:real 
   [t1>t & state(γ, t1) |= agents_of_type_at_location(x, criminal, l) 
   � c/NL = x±c*δ] 
 

 As was already clear from the table above, this 
property generally does not hold, since the agents do 
not equally spread over the locations. The property 
only holds for a very high δ.  In addition to the checks 
mentioned above, these properties have been checked 
against a number of other simulation traces under 
different parameter settings. Due to space limitations, 
the results are not shown here. All in all, these checks 
pointed out that in all of the cases roughly the same 
pattern was found. For all traces, eventually the 
numbers of agents of the different groups (e.g., 
criminals, passers-by and guardians) at the different 
locations more or less stabilise. Moreover, per location, 
eventually the same percentage of the overall 
population is present for the three different agent types. 
Finally, it turns out that the agents (per type) are not 
really spread equally over the locations, but this 
depends very much on the initial distribution. 
 



7. Discussion 
 
 In this paper two models have been introduced to 
investigate the criminological phenomenon of the 
displacement of crime. Hereby, a population-based 
model has been introduced as well as an agent-based 
model. These models have been presented in a generic 
format to allow for an investigation of a variety of 
different functions representing aspects such as the 
attractiveness of locations. Using mathematical 
analysis, and confirmed by simulation results, the 
population-based model was shown to end up in an 
equilibrium for one variant of the model. The 
parameter settings for these simulations have been 
determined in cooperation with criminologists. The 
simulation results for the agent-based model using the 
same parameter settings show an identical trend to the 
population-based model except for some minor 
deviations that can be attributed to the fact that the 
agent-based model is discrete, as confirmed by the 
formal evaluation. The computation time of the 
populations-based model was shown to be much lower 
than the computation time of the agent-based model. 
 Note that the results reported in this paper are not 
completely in accordance with the results reported in 
[4]. In the results using an agent-based model reported 
in that paper, cyclic patterns were observed whereby 
there is a continuous movement of so called hot-spots 
(i.e. places where a lot of crime takes place). As 
already stated before, this paper shows that the 
population of agents at the various locations stabilises 
over time. The difference can be attributed to the fact 
that in [4] all agents decide where to move to based 
upon the attractiveness of locations, whereas in the 
case of the models presented in this paper only a subset 
of the agents move. The results can however be 
reproduced using the model presented in this paper as 
well by using an �  = 1 and � t = 1 (see the Appendix 
[17], Figure C and D). Determining what settings are 
most realistic in real life is future work. 
 The idea that population-based models approximate 
agent-based models for larger populations is indeed 
confirmed by the simulation results reported in this 
paper. Future work is to introduce a general framework 
to make a comparison between the models possible. 
Furthermore, in future work, also agent-based models 
will be studied where the agents have bounded 
rationality (e.g., are able to sense just their local 
surroundings and to communicate with a limited 
number of other agents). 
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