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Abstract.  Trust dynamics can be modelled in relation to experiences. Both cognitive and neural models for trust 

dynamics in relation to experiences are available, but were not yet related or compared in more detail. This paper 

presents a comparison between a cognitive and a neural model. As each of the models has its own specific set of 

parameters, with values that depend on the type of person modelled, such a comparison is nontrivial. In this paper 

a comparison approach is presented that is based on mutual mirroring of the models in each other. More 

specifically, for given parameter values set for one model, by automated parameter estimation processes the most 

optimal values for the parameter values of the other model are determined to show the same behavior. Roughly 

spoken the results are that the models can mirror each other up to an accuracy of around 90%. 

 

 

1  Introduction 
 

A variety of computational models have been proposed for the dynamics of human trust in relation to 

experiences; see e.g., (Jonker and Treur, 1999, 2003; Falcone and Castelfranchi, 2004; Hoogendoorn, 

Jaffry, and Treur, 2008). Usually such models consider experiences and trust as cognitive concepts, and 

depend on values for a set of parameters for specific (cognitive) characteristics of a person, such as trust 

flexibility vs rigidity. Recently also neural models for trust dynamics have been introduced. An example 

of such a neural model, in which in addition a role for emotional responses is incorporated, is described in 

(Hoogendoorn, Jaffry, and Treur, 2009). Also the latter model includes a specific set of parameters for 

(neurological) characteristics of the person modelled. As the set of parameters of this neural model has no 

clear connection to the parameters in cognitive models such as in (Hoogendoorn, Jaffry, and Treur, 2008), 

and the behavior of such models strongly depends on the values for such parameters, a direct comparison 

is impossible.  

Therefore in this paper, a more indirect way to compare the models is used, by mutual mirroring them 

in each other. This mirroring approach uses any set of values that is assigned to the parameters for one of 

the models to obtain a number of simulation traces. These simulation traces are approximated by the 

second model, based on automated parameter estimation. The error for this approximation is considered 

as a comparison measure. In this paper this mirroring approach is applied to the two models for the 

dynamics of relative trust described in (Hoogendoorn, Jaffry, and Treur, 2008) and (Hoogendoorn, Jaffry, 

and Treur, 2009). It is applied in two directions, and also back and forth sequentially by using the 

estimated parameter values for the second model to estimate new parameter values for the first model.  

In the paper, first in Section 2 the cognitive model is briefly summarised, and in Section 3 the neural 

model. In Section 4 the mirroring approach is discussed and the automated parameter estimation method. 

Section 5 reports the outcome of some of the experiments performed. Finally, Section 6 is a discussion. 

 

2   A Cognitive Model for the Dynamics of Relative Trust 

The cognitive model taken from (Hoogendoorn, Jaffry, and Treur, 2008) is composed from two models: 

one for the positive trust, accumulating positive experiences, and one for negative trust, accumulating 

negative experiences. First the positive trust is addressed. The human’s relative positive trust on an option 

i at time point t is based on a combination of two parts: the autonomous part, and the context-dependent 

part. For the latter part an important indicator is 𝜏𝑖
+ 𝑡 : the ratio of the human’s trust of option i to the 

average human’s trust on all options at time point t. Similarly the human’s relative negative trust of 

option i at time point t (τ
-
i(t)) is the ratio between human’s negative trust of  the option i and the average 

human’s negative trust of the options at time point t. These are calculated as follows: 



2 

 

𝜏𝑖
+ 𝑡 =  

𝑇𝑖
+ (𝑡)

 𝑇𝑗
+ 𝑡 𝑛

𝑗=1
𝑛

 
                    𝜏𝑖

− 𝑡 =  
𝑇𝑖
− (𝑡)

 𝑇𝑗
− 𝑡 𝑛

𝑗=1
𝑛

 
  

Here the denominators express the average positive and negative trust over all options at time point t. The 

context-dependent part is designed in such a way that when the positive trust is above the average, then 

upon each positive experience it gets an extra increase, and when it is below average it gets a decrease. 

This principle is a variant of a ‘winner takes it all’ principle, which for example is sometimes modelled by 

mutually inhibiting neurons. This principle has been modelled by basing the change of trust upon a 

positive experience on 𝜏𝑖
+ 𝑡 − 1, which is positive when the positive trust is above average and negative 

when it is below average. To normalise, this is multiplied by a factor 𝑇𝑖
+ 𝑡 ∗  1 − 𝑇𝑖

+ 𝑡  .  For the 

autonomous part the change upon a positive experience is modelled by 1 − 𝑇𝑖
+ 𝑡 . As  indicates in how 

far the human is autonomous or context-dependent in trust attribution, a weighted sum is taken with 

weights  and 1- respectively. Therefore, using the parameters defined in above 𝑇𝑖
+is modelled by the 

following differential equation: 

𝑑𝑇𝑖
+ 𝑡 

𝑑𝑡
 =   * [( ∗  1 − 𝑇𝑖

+ 𝑡    +  1 − 𝜂 ∗  𝜏𝑖
+ 𝑡 − 1  ∗ 𝑇𝑖

+ 𝑡 ∗  1 − 𝑇𝑖
+ 𝑡  ]  ∗ 𝐸𝑖 𝑡 ∗  1 + 𝐸𝑖 𝑡  ) / 2 

                           −  ∗ 𝑇𝑖
+ 𝑡 ∗  1 + 𝐸𝑖 𝑡  ∗  1 − 𝐸𝑖 𝑡    

Similarly, for negative trust: 

 
𝑑𝑇𝑖

− 𝑡 

𝑑𝑡
 =   ∗  [ ∗  1 − 𝑇𝑖

− 𝑡  +  1 − 𝜂 ∗  𝜏𝑖
− 𝑡 − 1  ∗ 𝑇𝑖

− 𝑡 ∗  1 − 𝑇𝑖
− 𝑡  ] ∗ 𝐸𝑖 𝑡 ∗  1 − 𝐸𝑖 𝑡   / 2 

−  ∗ 𝑇𝑖
− 𝑡 ∗  1 + 𝐸𝑖 𝑡  ∗  1 − 𝐸𝑖 𝑡   

The trust 𝑇𝑖 𝑡  of option i at time point t is a number between [-1, 1] where -1 and 1 represent minimum 

and maximum values of the trust respectively. It is the difference of the human’s positive and negative 

trust of option i at time point t:   𝑇𝑖 𝑡 = 𝑇𝑖
+ 𝑡 − 𝑇𝑖

− 𝑡 . For more details, see (Hoogendoorn, Jaffry and 

Treur, 2008). 

 

3   A Neural Model for the Dynamics of Relative Trust and Emotion 

 

Cognitive states of a person, such as sensory or other representations often induce emotions felt within 

this person, as described by neurologist Damasio (1999, 2004). Emotion generation via a body loop 

roughly proceeds according to the following causal chain: 
 

cognitive state     preparation for the induced bodily response      induced bodily response      

sensing the bodily response    sensory representation of the bodily response    induced feeling 
 

As a variation, an ‘as if body loop’ uses a direct causal relation preparation for the induced bodily response  

 sensory representation of the induced bodily response  as a shortcut in the causal chain. The body loop (or 

as if body loop) is extended to a recursive body loop (or recursive as if body loop) by assuming that the 

preparation of the bodily response is also affected by the state of feeling the emotion: feeling    

preparation for the bodily response  as an additional causal relation. Such recursiveness is also assumed by 

Damasio (2004, pp. 91-92), as he notices that what is felt by sensing is actually a body state which is an 

internal object, under control of the person. Another neurological theory addressing the interaction 

between cognitive and affective aspects can be found in Damasio’s Somatic Marker Hypothesis; cf. 

(Damasio, 1994, 1996; Bechara and Damasio, 2004; Damasio, 2004). This is a theory on decision 

making which provides a central role to emotions felt. Within a given context, each represented decision 

option induces (via an emotional response) a feeling which is used to mark the option. For example, a 

strongly negative somatic marker linked to a particular option occurs as a strongly negative feeling for 

that option. Similarly, a positive somatic marker occurs as a positive feeling for that option. Usually the 

Somatic Marker Hypothesis is applied to provide endorsements or valuations for  options for a person’s 

actions, thus shaping the decision process. Somatic markers may be innate, but may also by adaptive, 

related to experiences  (Damasio, 1994, p. 179). In the model used below, this adaptive aspect is 

modelled as Hebbian learning; cf. (Hebb, 1949; Bi and Poo, 2001; Gerstner and Kistler, 2002). Viewed 

informally, in the first place it results in a dynamical connection strength obtained as an accumulation of 

experiences over time (1). Secondly, in decision making this connection plays a crucial role as it 
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determines the emotion felt for this option, which is used as a main decision criterion (2). As discussed in 

the introduction, these two properties (1) and (2) are considered two main functional, cognitive properties 

of a trust state. Therefore they give support to the assumption that the strength of this connection can be 

interpreted as a representation of the trust level in the option considered. 

 
The neural model 

An overview of the model for how trust dynamics emerges from the experiences is depicted in Figure 1. 

How decisions are made, given these trust states is depicted in Figure 2. These pictures also show 

representations from the detailed specifications explained below. However, note that the precise 

numerical relations between the indicated variables V shown are not expressed in this picture. They are 

explained below. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Overview of the neurological model for dynamics of trust and emotion 

 

Activation level for preparation of body state: noncompetitive case 

The emotional response to the person’s mental state in the form of the preparation for a specific bodily 

reaction (see label LP4 in Figure 1) is modelled in the noncompetitive case as follows. Here the mental 

state comprises a number of cognitive and affective aspects: options activated, experienced results of 

options and feelings. This specifies part of the loop between feeling and body state. This dynamic 

property uses a combination model based on a function   
 

g(, , V1, V2, V3 ,1, 2, 3)   
 

including a threshold function. For example, 
 

g(, , V1, V2, V3)  = th(, , V1 + 2V2 + 3V3) 
 

with V1, V2, V3 activation levels and 1, 2, 3  weights of the connections to the preparation state, and  

th(, ,V)  = 1/(1+e
- (V-)

 ) a threshold function with threshold   and steepness . Then the activation 

level V4 of the preparation for an option is modelled by 
 

dV4/dt =  (g(, , V1, V2, V3, 1, 2, 3)-V4)  
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Activation level for preparation of body state: competitive case 

For the competitive case also the inhibiting cross connections from one represented option to the body 

state induced by another represented option are used. In this case a function involving these cross 

connections can be defined, for example for two considered options 
 

h(, , V1, V2, V3, V21,1, 2, 3, 21) = th(, , 1V1 + 2V2 + 3V3 - 21V21) 
 

with 21  the weight of the suppressing connection from represented option 2 to the preparation state 

induced by option 1. Then  
 

dV4/dt =  (h(, , V1, V2, V3, V21,1, 2, 3, 21) - V4)  
 

with V4 the activation level of preparation for option 1.  

 

Activation level for preparation of action choice 

For the decision process on which option Oi  to choose, represented by action Ai, a winner-takes-it-all 

model is used based on the feeling levels associated to the options; for an overview, see label LP10 in 

Figure 2. This has been realised by combining the option representations Oi with their related emotional 

responses Bi in such a way that for each i the level of the emotional response Bi has a strongly positive 

effect on preparation of the action Ai  related to option Oi  itself, but a strongly suppressing effect on the 

preparations for actions Aj  related to the other options Oj for j ≠ i. As before, this is described by a 

similar function  
 

h(, , V1, … ,Vm, U1, … ,Um,11, …,mm) 
 

as before, with Vi  levels for representations of options Oi and Ui levels of preparation states for body state 

Bi related to options Oi and ij  the strength of the connection between  preparation states for body state Bi 

and preparation states for action Aj. 
 

dWi  /dt  =   (h(, , V1, … ,Vm, U1, … ,Um,11, .. mm) - Wi) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2:  Overview of the neurological model for trust-based decision making 

 

The Hebbian adaptation process 

From a neurological perspective the strength of a connection from an option to an emotional response 

may depend on how experiences are felt emotionally, as neurons involved in the option, the preparation 

for the body state, and in the associated feeling will often be activated simultaneously. Therefore such a 

connection from option to emotional response may be strengthened based on a general Hebbian learning 

mechanism (Hebb, 1949; Bi and Poo, 2001; Gerstner and Kistler, 2002) that states that connections 

between neurons that are activated simultaneously are strengthened, similar to what has been proposed 

for the emergence of mirror neurons; e.g., (Keysers and Perrett, 2004; Keysers and Gazzola, 2009). This 

principle is applied to the strength 1  of the connection from an option to the emotional response 

expressed by the related body state. The following Hebbian learning rule takes into account a maximal 

connection strength 1, a learning rate , and an extinction rate . 
 

LP3 

LP10 

rep(option1, V) 

rep(option2, V) 

LP1 

LP4 

LP10   

world_state(w, V) srs(w, V) 

preparation_ 

state(a1, V) 
effector_state(a1, V) 

sensor_state(w, V) 

effector_state(a2, V) 

LP2 

LP4 

preparation_ 

state(a2, V) 

preparation_ 

state(b1, V) 

preparation_ 

state(b2, V) 

LP11 

LP11   



5 

 

d1 /dt = V1V2(1 - 1) - 1 
 

Here V1   is the activation level of the option o1 and V2   the activation level of preparation for body state 

b1. A similar Hebbian learning rule can be found in (Gerstner and Kistler, 2002, p. 406). By this rule 

through their affective aspects, the experiences are accumulated in the connection strength from option o1 

to preparation of body state b1, and thus serves as a representation of trust in this option o1.  

 

 

4  The Mirroring Approach to Compare the Parameterised Models 

The mirroring approach used to compare the two parameterised models for trust dynamics works as 

follows: 
 

 Initially, for one of the models any set of values is assigned to the parameters of the model  

 Next, a number of scenarios are simulated based on this first model.  

 The resulting simulation traces for the first model are approximated by the second model, based 

on automated parameter estimation.  

 The error for the most optimal values for the parameters of the second model is considered as a 

comparison measure.  
 

Parameter estimation can be performed according to different methods, for example, exhaustive 

search, bisection or simulated annealing (cf. Hoogendoorn, Jaffry and Treur, 2009a). As the models 

considered here have only a small number of parameters exhaustive search is an adequate option. Using 

this method the entire attribute search space is explored to find the vector of parameter settings with 

maximum accuracy. This method guarantees the optimal solution, described as follows: 

 

for each observed behavior B 

for each vector of parameter value settings P 

calculate the accuracy of P 

end for 

output the vector of parameter settings with maximal accuracy 

end for 
 

In the above algorithm, calculation of the accuracy of a vector of parameter setting P entails that agent 

predicts the information source to be requested and observes the actual human request. It then uses the 

equation for calculating the accuracy described before. Here if p parameters are to be estimated with 

precision q (i.e., grain size 10
-q

), the number of options is n , and m the number of observed outcomes 

(i.e., time points), then the worst case complexity of the method can be expressed as О ((10)
pq

 nm
2
), 

which is exponential in number of parameters and precision. In particular, when p=3 (i.e., the parameters 

β, γ, and η), q=2 (i.e., grain size  0.01), n=3 and m=100, then the complexity will result in 3 x 10
10

 steps. 
 

5.   Comparison Results 

A number of experiments were performed using the mutual mirroring approach described in Section 4 

to compare the two parameterised models for trust dynamics. Experiments were set up according to two 

cases: 

1. Two competitive options provide experiences deterministically, with a constant positive, 

respectively negative experience, alternating periodically in a period of 50 time steps each (see 

Figure 3).  

2. Two options provide experiences with a certain probability of positivity, again in an alternating 

period of 50 time steps each.  

The first case of experiments was designed to compare the behavior of the models for different 

parameters under the same deterministic experiences while the second case is used to compare the 

behavior of the models for the (more realistic) case of probabilistic experience sequences. the general 

configurations of the experiment that are kept constant for all experiments are shown in Table 1. 

Three experiments were performed for each case: after some parameter values were assigned to the 

cognitive model, its behavior was approximated by the neural model, using the mirroring approach based 

on the automatic parameter estimation technique described in Section 4. The best approximating 
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realization of the neural model was used again to be approximated by the cognitive model using the same 

mirroring approach. This second approximation was performed to minimize uni-directionality of the 

mirroring approach that might bias the results largely if performed from only one model to another and 

not the other way around.  

 
Parameter Neural Model Cognitive Model 

Number of competitive options 2 2 

Time step (difference equations) 0.1 0.1 

Number of time steps 500 500 

Initial trust values of option 1 and option 2 0.5, 0.5 0, 0 

Strength of connection from option to emotional response (ω1) 0.5 not applicable 

Strength of connection between preparation state of body and 

preparation state of action (ωij) 

0.5 not applicable 

Strength of connection between feeling and preparation of body  state 0.25 not applicable 

Value of the world state 1 not applicable 

Grain size in parameter estimation 0.05 0.01 

 

Table 1: General Experimental Configuration 

An instance of a parameterized model can uniquely be represented by a tuple containing the values of 

its parameters. Here the cognitive and neural models described in Section 2 and 3 are represented by 

value tuples for (γ, β, η) and (, , γ, η, ) respectively. For the sake of simplicity, a few parameters of the 

neural model, namely 1, 12 and 21, were considered fixed with value 0.5, and were not included in 

model representation tuple. Furthermore, the initial trust values of both models are assumed neutral (0.0 

and 0.5 for cognitive and neural model resp.), see Table 1. 

 

Case 1 

In this case the behavior of the models was compared experiences are provided deterministically with 

positive respectively negative experience, alternating periodically in a period of 50 time steps each (see 

Figure 3).  

 

 
 

Figure 3: a) Experience sequence for cognitive model, b) Experience sequence for neural model 

Here three different experiments were performed, where the parameters of cognitive model are 

assigned with some initial values and then its behavior is approximated by the neural model. The best 

approximation of the neural model against the initially set cognitive model was reused to find the best 

matching cognitive model. Results of the approximated models and errors are shown in Table 2 while the 

graphs of the trust dynamics are presented in Figure 4. Note that for the sake of ease of comparison and 

calculation of standard error the trust values of cognitive model are projected from the interval [-1, 1] to 

[0, 1] (see Figure 4). In Table 2, the comparison error  is the average of the root mean squared error of 

all options, as defined by the following formula,  

 =
1

𝑛
∗    (𝑇(𝑗)1𝑖 − 𝑇(𝑗)2𝑖)

2

𝑚

𝑗=1

𝑛

𝑖=1

 

In the above formulation, n is the number of options, m is the number of time steps while T(j)1i and T(j)2i  

represent trust value of option i at time point j for each model, respectively.  
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Experiment Initial Model Approximating Model using the 

mirroring approach 

Comparison 

Error () 

1 Cognitive Model (0.99, 0.75, 0.75) Neural Model (0.55, 10, 0.15, 0.90, 0.50) 0.074050 

 Neural Model (0.55, 10,0 .15, 0.90, 0.50) Cognitive Model (0.96, 0.20, 0.53) 0.034140 

2 Cognitive Model (0.88, 0.99, 0.33) Neural Model (0.35, 10, 0.60, 0.95, 0.60) 0.071900 

 Neural Model (0.35, 10, 0.60, 0.95, 0.60) Cognitive Model (0.87, 0.36, 0.53) 0.059928 

3 Cognitive Model (0.75, 0.75, 0.75) Neural Model (0.30, 10, 0.95, 0.90, 0.60) 0.138985 

 Neural Model (0.55, 10,0 .15, 0.90, 0.50) Cognitive Model (0.83, 0.37, 0.55) 0.075991 

 

Table 2: Results of Case 1 

In Table 2 for experiment 1 initially the cognitive model was set with parameters (0.99, 0.75, 0.75) 

which was then approximated by the neural model. The best approximation of the neural model was 

found to be (0.55, 10, 0.15, 0.90, 0.50) with an approximate mean of root mean squared error of all 

options  value 0.074050. Then this setting of neural model was used to approximate cognitive model 

producing best approximate with parameter values (0.96, 0.20, 0.53) and   0.034140.  Similarly the 

results of other two experiments can be read in Table 2.  

 

 a) 

 b) 

 c) 

 

Figure 4: Dynamics of the Trust in Case 1 a) Experiment 1, b) Experiment 2, c) Experiment 3 

Figure 4 represents the dynamics of the trust in the two options over time for the deterministic case. 

The horizontal axis represent time step while vertical axis represent the value of trust. The graphs for each 

experiment are represented as set of three figures, where the first figure shows the dynamics of the trust of 

both options by the cognitive model with an initial setting as described in the second column of the first 

row of each experiment of Table 2. The second figure shows the traces of the dynamics of trust by the 

model as described in the third column of the first row of each experiment of Table 2. Finally the third 

figure shows the approximation of the neural model by the cognitive model, where the neural model is 

described in the second column of the second row of each experiment of Table 2 (which is similar to third 

column of the first row of each experiment), and the approximating cognitive model is presented in the 

third column of the second row of each experiment. 

From Table 2 and Figure 4 it can be observed that the mirroring approach based on automatic 

parameter estimation when used in bidirectional way gives a better realization of both models in each 

other, resulting in a smaller comparison error and better curve fit.  

 

Case 2 

In the second case the behavior of the models was compared when experiences are provided with a 

certain probability of positivity, again in an alternating period of 50 time steps each. Also here three 
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different experiments were performed, where the parameters of the cognitive model were assigned with 

some initial values and then its behavior was approximated by the neural model. The best approximation 

of the neural model against initially set cognitive model was reused to find the best matching cognitive 

model. In experiment 1, 2 and 3 the option 1 and option 2 give positive experiences with (100, 0), (75, 25) 

and (50, 50) percent of probability, respectively. Results of approximated models and errors for this case 

are shown in Table 3 while the graphs of trust dynamics are presented in Figure 5. Note that for the sake 

of ease of comparison and calculation of the standard error, again the trust values of the cognitive model 

are projected from the interval [-1, 1] to [0, 1] (see Figure 4). 

 
Experiment Initial Model Approximating Model using the 

mirroring approach 

Comparison 

Error () 

1 Cognitive Model (0.99, 0.75, 0.75) Neural Model (0.85, 10, 0.95, 0.20, 0.05) 0.061168 

 Neural Model (0.85, 10, 0.95, 0.20, 0.05) Cognitive Model (0.97, 0.99, 0.18) 0.045562 

2 Cognitive Model (0.99, 0.75, 0.75) Neural Model (0.40, 20, 0.90, 0.20, 0.15) 0.044144 

 Neural Model (0.40, 20, 0.90, 0.20, 0.15) Cognitive Model (0.83, 0.05, 0.99) 0.039939 

3 Cognitive Model (0.99, 0.75, 0.75) Neural Model (0.10, 20, 0.45, 0.10, 0.10) 0.011799 

 Neural Model (0.10, 20, 0.45, 0.10, 0.10) Cognitive Model (0.99, 0.50, 0.99) 0.011420 

 

Table 3: Results of Case 2 

In Table 3 for experiment 1 initially the cognitive model was set with parameters (0.99, 0.75, 0.75) 

which was then approximated by the neural model. The best approximation of the neural model was 

found to be (0.85, 10, 0.95, 020, 0.05) with an approximate mean of root mean squared error of all 

options  of value 0.061168. Then this setting of neural model was used to approximate cognitive model 

producing best approximate with parameter values (0.97, 0.99, 0.18) and   0.034140.  Similarly the 

results of other two experiments could also be read in Table 3.  
 

 a) 

 b) 

 c) 

 

Figure 5: Dynamics of the Trust in Case 2, a) Experiment 1, b) Experiment 2, c) Experiment 3 

Figure 5 represents the dynamics of the trust in the two options over time for the probabilistic case. 

the horizontal axis represents time while the vertical axis represents the values of trust. Here also the 

graphs of each experiment are represented as set of three figures, where the first figure shows the 

dynamics of the trust in both options by the cognitive model with an initial setting as described in the 

second column of the first row of each experiment of Table 3. The second figure shows the traces of the 

dynamics of trust by the neural model as described in the third column of the first row of each experiment 

of Table 3. Finally, the third figure is the approximation of the neural model by the cognitive model, 

where the neural model is described in the second column of the second row of each experiment of Table 
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3 (which is similar to third column of the first row of each experiment),  and the approximating model is 

presented in the third column of the second row of each experiment. 

As already noticed in case 1, also here it can be observed that the mirroring approach based on 

automatic parameter estimation when used in bidirectional way gives a better realization of both models 

in each other, resulting smaller comparison error and a better curve fit. Furthermore, it can also be noted 

that as the uncertainty in the options behavior increases, both models show more similar trust dynamics 

producing lower error value in comparison. 

6.   Discussion 

In this paper two parameterised computational models for trust dynamics were compared: a cognitive 

model and a neural model. As the parameter sets for both models are different, the comparison involved 

mutual estimation of parameter values by which the models were mirrored into each other in the 

following manner. Initially, for one of the models any set of values was assigned to the parameters of the 

model, after which a number of scenarios were simulated based on this first model. Next, the resulting 

simulation traces for this first model were approximated by the second model, based on automated 

parameter estimation. The error for the most optimal values for the parameters of the second model was 

considered as a comparison measure. It turned out that appoximations could be obtained with error 

margins of about 10%. Furthermore the results for the (more realistic) case of probabilistic experience 

sequences have shown much better approximation than for the deterministic case. This can be considered 

a positive result, as the two models have been designed in an independent manner, using totally different 

techniques. In particular, it shows that the cognitive model, which was designed first, without taking into 

account neurological knowledge, can still be grounded in a neurological context, which is a nontrivial 

result. 
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