
A Novel Parallel Algorithm for Edit Distance Computation
MUHAMMAD MURTAZA YOUSAF*, MUHAMMAD UMAIR SADIQ*, LAEEQ ASLAM*,

WAQAR UL QOUNAIN*, AND SHAHZAD SARWAR*

RECEIVED ON 14.06.2017 ACCEPTED ON 21.08.2017

ABSTRACT

The edit distance between two sequences is the minimum number of weighted transformation-operations

that are required to transform one string into the other. The weighted transformation-operations are

insert, remove, and substitute. Dynamic programming solution to find edit distance exists but it becomes

computationally intensive when the lengths of strings become very large. This work presents a novel

parallel algorithm to solve edit distance problem of string matching. The algorithm is based on resolving

dependencies in the dynamic programming solution of the problem and it is able to compute each row of

edit distance table in parallel. In this way, it becomes possible to compute the complete table in min(m,n)

iterations for strings of size m and n whereas state-of-the-art parallel algorithm solves the problem in

max(m,n) iterations. The proposed algorithm also increases the amount of parallelism in each of its

iteration. The algorithm is also capable of exploiting spatial locality while its implementation. Additionally,

the algorithm works in a load balanced way that further improves its performance. The algorithm is

implemented for multicore systems having shared memory. Implementation of the algorithm in OpenMP

shows linear speedup and better execution time as compared to state-of-the-art parallel approach. Efficiency

of the algorithm is also proven better in comparison to its competitor.

Key Words: Edit Distance, Levenshtein Distance, OpenMP, Speedup.

Corresponding Author (E-Mail:murtaza@pucit.edu.pk)
* Punjab University College of Information Technology, University of the Punjab, Lahore.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
223

1. INTRODUCTION

This work will be focusing on the problem of checking

how similar two strings are, in other words, how closely

two strings resemble. In this regard, a well-defined measure

exists, called Levenshtein distance. In simple words,

Levenshtein distance is the number of transformation-

operations (deletion, insertion, or substitution) required

to transform one string to another. Sometimes,

Levenshtein distance is also referred as edit distance

between two strings. Edit distance find its applications in

natural language processing where spell correction is most

common use of it and in computational biology it is used

Comparison of two strings helps in solving

problems from many domains including

bioinformatics (DNA analysis) [1], text-

processing (spell-checkers, plagiarism detection, and

error correction), signal processing, information retrieval,

speech recognition, and web mining. String matching or

string comparison comes into different forms: finding if a

string is substring of another string, identifying the

longest common subsequence, and checking how similar

or dissimilar two strings are [2]. All these forms of string

matching have their own applications in different areas.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
224

A Novel Parallel Algorithm for Edit Distance Computation

for matching and aligning DNA sequences. It is also used

for machine translation, information extraction and speech

recognition.

Dynamic programming solutions exist to find edit distance

but it becomes computationally intensive when the

lengths of strings become very large. Hence, a parallel

algorithm can always help in finding the solution in

reasonable time. This study presents a novel parallel

algorithm to compute edit distance. The theoretical design

is thoroughly evaluated and compared with state-of-the-

art parallel approach. Further, the algorithm is implemented

in OpenMP for multicore systems that showed improved

results.

Rest of the paper is organized as follows: Section 2 explains

the Levenshtein distance, Section 3 discusses parallel

approaches to compute Levenshtein distance, hence

cover the related work, Section 4 presents the

justifications for our novel parallel approach to compute

Levenshtein distance and theoretically compares our

approach with state-of-the-art, and Section 5 discusses

the implementation and experimental results. Finally,

Section 6 concludes the work highlighting future

directions.

2. LEVENSHTEIN DISTANCE (EDIT
DISTANCE)

This section defines theLevenshtein distance or simply

edit distance and explain by using a simple example, its

mathematical formulation, and its dynamic programming

solution.

2.1 Definition

Given two strings/sequences A = 〈a
1
, a

2
,….,a

m
〉 and B =

〈b
1
, b

2
,….,b

n
〉of size m and n respectively, over a finite X =

〈X
1
, X

2
,….,X

k
〉, the edit distance between A and B,

represented by ED
AB

is the minimum number of weighted

transformation-operations that are required to transform

A into B. This work assumes that the weighted

transformation-operations are insert, remove, and

substitute and weight of each operation is 1.

If A =〈Thursday〉 and B = 〈Tuesday〉then ED
AB

 = 0 because

no transformation-operation is required because both the

strings are identical.

If A =〈Thursday〉 and B = 〈Tuesday〉then ED
AB

 = 2 because

one remove (remove ‘h’) and one substitution (replace ‘r’

with ‘e’) is required to transform A into B.

2.2 Mathematical Formulation

Given two strings/sequences A = 〈a
1
,a

2
,…,a

m
〉 and B =

〈b
1
,b

2
,…,b

n
〉 of size m and n respectively, over a finite

alphabet X=〈x
1
,x

2
,…x

k
〉, the edit distance between A and

B, represented by ED
AB

 is defined by the recurrence in

Equation (1).ED
AB

(i,j) is the distance between the first i

characters of string A and the first j characters of string B.

() () () ()
()
()
()

+−
+−
+−

=−−
=
=

=

Otherwise

1j1,iED

1j1,iED

11ji,ED

min

1-jB 1-iA If1j1,iED

0j Ifi

0i If

ji,ED

AB

AB

AB
AB

AB

j

 (1)

Where (1 < I < m and 1 < j < n)

2.3 Dynamic Programming Solution

Given two strings of length m and n, a distance table D of

size (m+1, n+1) is built in which D[i,j] is the distance

between the first i characters of first string and the first j

characters of second string. D[m, n] would be edit distance

between both strings. This table can be filled in row-

major order, i.e. row-by-row from top to bottom, and left

to right within each row or in column major order i.e.

column by column from left to right and top to bottom

within each column. Sequential calculation of the table

takes O(mn) time where m and n are lengths of strings. A

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
225

A Novel Parallel Algorithm for Edit Distance Computation

sample distance table for strings A = 〈OMONA〉 and B =

〈MOON〉 is presented in Fig. 1. Where ED
AB

 = 3 because

two substitutions (replace ‘O’ with ‘M’ and replace ‘M’

with ‘O’) and one remove (remove ‘A’) is required to

transform A into B.

2.4 Parallel Algorithm Formulation

This section discusses that how the distance table can

be built in parallel. In order to do that, it is important to

understand how the entries of the table are populated.

As mentioned in the previous section, in case of sequential

computation, the table can be filled in row-major or

column-major order. But, to compute more than one entry

simultaneously, some dependency analysis is required.

2.5 Computational Dependency Analysis

It can be observed from Equation (1) that each value of

the distance table is computed based on three other values

of the distance table which are in previous row and column

as depicted in Fig. 2. According to this dependency neither

a row nor a column can be calculated in parallel because

computation of every entry in a row is dependent on the

previous entry in same row and same is true in case of a

column.

3. RELATED WORK

To solve edit distance problem in parallel major solutions

are based on bit parallel [3] and diagonal parallelism

approach. Bit parallel algorithms depend upon machine

word size but as machine word size increases their

performance decreases hence these are not applicable to

general processors [4].

Parallel algorithms to compute edit distance that are based

on diagonal approach, compute the distance table

diagonally i.e. one diagonal at a time because from

dependence analysis it can be observed that each

diagonal is dependent only on previous diagonal as

shown in Fig. 3. Recently, most of the parallel algorithms

to compute edit distance are based on diagonal approach.

With this approach, if there are two strings of size m and

n, then at most min (m, n) cells of distance table can be

computed in parallel as it would be size of largest diagonal.

Further, when m and n are almost same, this largest amount

of parallelism will be attained only few number of times.

With varying amount of parallelism at each step, it is also

hard to maintain load balancing in diagonal based

approaches [5-7].

FIG. 1. A SAMPLE EDIT DISTANCE TABLE

FIG. 2. COMPUTATIONAL DEPENDENCY OF D[I, J] IN EDIT
DISTANCE TABLE

O M O N A

0 1 2 3 4 5

M 1 1 1 2 3 4

O 2 1 2 1 2 3

O 3 2 2 2 2 3

N 4 3 3 3 2 3

FIG. 3. DIAGONAL APPROACH

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
226

A Novel Parallel Algorithm for Edit Distance Computation

Parallel algorithm to solve edit distance problem used in

[8] also uses diagonal based approach but it is specific to

FPGA. Niewiarowski et. al. [9] used .NET Framework 4.0

technology with a specific implementation of threads using

the System.Threading.Tasknamespace library and it

requires specific number of threads to be executed in

parallel. For different amount of threads it is not cost

effective.

4. MAJOR CONTRIBUTION – NOVEL

PARALLEL ALGORITHM

This section presents the novel parallel algorithm to

compute edit distance.

Definition-1: if ith character of first string matches with jth

character of second string then D[i,j] is called a match

case.

Definition-2: if ith character of first string does not match

with jth character of second string then D[i,j] is called a

non-match case.

Considering a cell D[i,j-1] of edit distance table with the

edit distance ‘n’, there are following observations:

Observation-0: With the assumption that the weight of

each transformation-operation (insert, remove, and

substitute) is 1, it is obvious based on recurrence of

Equation (1) that the edit distance of two adjacent cells in

a row or in a column will not differ by more than 1. Hence,

D[i-1, j-1] may have ‘n-1’, ‘n’, or ‘n+1’.

Observation-1: If the edit distance in the ith row is

increasing and the edit distance in previous row is also

increasing. Possible cases, depicted in Fig. 4.

Observation-2: If the edit distance in the ith row is

increasing and the edit distance in previous row remains

same. Possible cases, depicted in Fig. 5.

)a(esaC)b(esaC)c(esaC

1-j j 1-j
j

1-j j

1-i 1-n n 1-i n 1-n 1-i 1+n 2+n

i n 1+n i n 1+n i n n

'a'esaC .)1(noitauqEfoecnerrucerehtsetaloivtiecneh,'n'nahtretaergeulavaevahtonnac]j,i[DesuacebelbissoptoN

'b'esaC
]j,i[D,)1(noitauqEfoecnerrucerotgnidroccaecneh,esachctam-nonasi]j,i[DfielbissopylnO

.1+)1+n,n,n(nimekatdluow

'c'esaC

:snoitautisowtgniwollofnielbissoP

.llectfel-potfoeulavehtsekat]j,i[D,)1(noitauqEfoecnerrucerotgnidroccaecneh,esachctamasi]j,i[DfI

.1+)2+n,1+n,n(nimekatdluow]j,i[D,)1(noitauqEfoecnerrucerotgnidroccaecneh,esachctam-nonasi]j,i[DfI

)a(esaC)b(esaC)c(esaC

1-j j 1-j j 1-j j

1-i 1-n 1-n 1-i n n 1-i 1+n 1+n

i n 1+n i n 1+n i n 1+n

'a'esaC .'n'nahtretaergeulavaevahtonnac]j,i[DesuacebelbissoptoN

'b'esaC .esachctam-nonasi]j,i[DfielbissopylnO

'c'esaC

:snoitautisowtgniwollofnielbissoP

.esachctam-nonasi]j,i[DfI

.esachctam-nonasi]j,i[DfI

FIG. 4. CASES FOR OBSERVATION-1

FIG. 5. CASES FOR OBSERVATION-2

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
227

A Novel Parallel Algorithm for Edit Distance Computation

Observation-3: If the edit distance in the ith row is

increasing and the edit distance in previous row is

decreasing. Possible cases, depicted in Fig. 6.

Observation-4: If the edit distance in the ith row remains

same and the edit distance in previous row is increasing.

Possible cases, depicted in Fig. 7.

Observation-4(a): If the case ‘a’ of observation 4

continues for the next column, then it would definitely be

a match case at D[i, j+1]. This self-explanatory situation

is depicted in Fig. 8.

Observation-5: If the edit distance in the ith row remains

same and the edit distance in previous row also remains

same. Possible cases, depicted in Fig. 9.

Observation-6: If the edit distance in the ith row remains

same and the edit distance in previous row is decreasing.

Possible cases, depicted in Fig. 10.

Observation-7: If the edit distance in the ith row is

decreasing and the edit distance in previous row is

increasing. Possible cases, depicted in Fig. 11.

)a(esaC)b(esaC)c(esaC

1-j j 1-j j 1-j j

1-i 1-n 2-n 1-i n 1-n 1-i 1+n n

i n 1+n i n 1+n i n 1+n

'a'esaC .'1-n'nahtretaergeulavaevahtonnac]j,i[DesuacebelbissoptoN

'b'esaC .'n'nahtretaergeulavaevahtonnac]j,i[DesuacebelbissoptoN

'c'esaC

:snoitautisowtgniwollofnielbissoP

.esachctamasi]j,i[DfI

.esachctam-nonasi]j,i[DfI

)a(esaC)b(esaC)c(esaC

1-j j 1-j j 1-j j

1-i 1-n n 1-i n 1+n 1-i 1+n 2+n

i n n i n n i n n

'a'esaC .esachctam-nonasi]j,i[DfielbissoP

'b'esaC .esachctamasi]j,i[DfielbissoP

'c'esaC .'1+n'nahtsseleulavaevahtonnac]j,i[DesuacebelbissoptoN

1-j j 1+j

1-i 1-n n 1+n

i n n N

)a(esaC)b(esaC)c(esaC

1-j j 1-j j 1-j j

1-i 1-n 1-n 1-i n n 1-i 1+n 1+n

i n n i n n i n N

'a'esaC .esachctam-nonasi]j,i[DfielbissoP

'b'esaC .esachctamasi]j,i[DfielbissoP

'c'esaC .'1+n'nahtsseleulavaevahtonnac]j,i[DesuacebelbissoptoN

FIG. 6. CASES FOR OBSERVATION-3

FIG. 7. CASES FOR OBSERVATION-4

FIG. 8. SITUATION FOR OBSERVATION-4(A)

FIG. 9. CASES FOR OBSERVATION-5

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
228

A Novel Parallel Algorithm for Edit Distance Computation

Observation-8: If the edit distance in the ith row is

decreasing and the edit distance in previous row remains

same. Possible cases, depicted in Fig. 12.

Observation-9: If the edit distance in the ith row is

decreasing and the edit distance in previous row is also

decreasing. Possible cases, depicted in Fig. 13.

Theorem-1: For a non-match case D[i, j+k] (k> 0) with

last match case D[i,j]

D[i, j+k] = min(D[i-1, j-1]+k, D[i-1, (j+k)-1]+1, D[i-1, j+k

]+1)

Proof: As D[i, j] is a match case, D[i,j]= D[i-1,j-1].

)a(esaC)b(esaC)c(esaC

1-j j 1-j j 1-j j

1-i 1-n 2-n 1-i n 1-n 1-i 1+n n

i n n i n n i n N

'a'esaC .'1-n'nahtretaergeulavaevahtonnac]j,i[DesuacebelbissoptoN

'b'esaC .esachctamasi]j,i[DfielbissoP

'c'esaC .esachctam-nonasi]j,i[DfifielbissoP

)a(esaC)b(esaC)c(esaC

1-j j 1-j j 1-j j

1-i 1-n n 1-i n 1+n 1-i 1+n 2+n

i n 1-n i n 1-n i n 1-n

'a'esaC .esachctamasi]j,i[DfielbissoP

'b'esaC .'n'nahtsseleulavaevahtonnac]j,i[DesuacebelbissoptoN

'c'esaC .'1+n'nahtsseleulavaevahtonnac]j,i[DesuacebelbissoptoN

)a(esaC)b(esaC)c(esaC

1-j j 1-j j 1-j j

1-i 1-n 1-n 1-i n n 1-i 1+n 1+n

i n 1-n i n 1-n i n 1-n

'a'esaC .esachctamasi]j,i[DfielbissoP

'b'esaC .'n'nahtsseleulavaevahtonnac]j,i[DesuacebelbissoptoN

'c'esaC .'1+n'nahtsseleulavaevahtonnac]j,i[DesuacebelbissoptoN

)a(esaC)b(esaC)c(esaC

1-j j 1-j j 1-j j

1-i 1-n 2-n 1-i n 1-n 1-i 1+n n

i n 1-n i n 1-n i n 1-n

'a'esaC .esachctamasi]j,i[DfielbissoP

'b'esaC .'1-n'nahtsseleulavaevahtonnac]j,i[DesuacebelbissoptoN

'c'esaC .'1+n'nahtsseleulavaevahtonnac]j,i[DesuacebelbissoptoN

FIG. 10. CASES FOR OBSERVATION-6

FIG. 11. CASES FOR OBSERVATION-7

FIG. 12. CASES FOR OBSERVATION-8

FIG. 13. CASES FOR OBSERVATION-9

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
229

A Novel Parallel Algorithm for Edit Distance Computation

A non-match case D[i, j+k] (k > 0), with last match case

D[i,j], may happen under Observations-1 (Case b and c),

Observation-2 (Case b and c), Observation-3 (Case c),

Observation-4 (Case a), Observation-5 (Case a), and/or

Observation-6 (Case c).

Fact-1: Under Observations-1 (Case b and c) the edit

distance in ith row and in (i-1)th row are increasing from the

last match case. In this case, D[i, j+k] would have increased

‘k’ times from D[i,j] or D[i-1, j-1]. Hence, for D[i, j+k], D[i-

1, j-1]+k would serve as it will be minimum out of D[i-1, j-

1]+k, D[i-1, (j+k)-1]+1, and D[i-1, j+k]+1.

Fact-2: Under Observation-2 (Case b and c), and

Observation-3 (Case c) the edit distance in ith row is

increasing and in (i-1)th row is decreasing or stays same

from the last match case. In this case, edit distance in (i-

1)th row will be less than edit distance in ith row. Hence, for

D[i, j+k], D[i-1, (j+k)-1]+1 or D[i-1, j+k]+1 would serve.

Fact-3: Under Observations-4(a), it cannot continue.

Fact-4: Under Observation-5 (Case a) and Observation-6

(Case c), the edit distance in ith row remains same and in

(i-1)th row is decreasing or stays same from the last match

case. In this case, edit distance in (i-1)th row will be less

than edit distance in ith row. Hence, for D[i, j+k], D[i-1,

(j+k)-1]+1 or D[i-1, j+k]+1 would serve.

Based on above facts, for any valid permutation of

Observations-1 (Case b and c), Observation-2 (Case b

and c), Observation-3 (Case c), Observation-4 (Case a),

Observation-5 (Case a), and/or Observation-6 (Case c),

D[i, j+k] = min(D[i-1, j-1]+k, D[i-1, (j+k)-1]+1, D[i-1, j+k

]+1).

According to Theorem-1, the dependency for the

computation of edit distance has been shifted to previous

row only as depicted in Fig. 14. It makes it possible to

compute a complete row of D in parallel having the

information of last match case available.

For a single character in firs string, it is possible to

calculate a row containing last matching index against all

the characters in second string. Similarly, it is also possible

to calculate such row for all unique characters in first

string. Let us call it MI (match Index) table. Given ‘u’

unique characters in first string and ‘n’ characters in

second string, MI
u,n

 table can be built using the recurrence

in Equation (2).

−

=
=

OtherwiseMI

casematch Ifj

0j If0

MI

1ji,

ji, (2)

Here, it is important to note that the cost of computing

MI table is significantly low as compared to the overall

computation required to build an edit distance table.The

MI table is computed only for unique characters in the

smaller string and considering a string composed of

conventional Latin letters, the number of unique

characters can be at most twenty-six. Considering any

other alphabet, this number would always remain a

constant so the computation of MI table would be mostly

a constant time operation. All the rows of MI table can

also be computed in parallel because the computation of

FIG. 14. SHIFT OF DEPENDENCY ON PREVIOUS ROW

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
230

A Novel Parallel Algorithm for Edit Distance Computation

its each row is independent. This fact further reduces the

computation time of MI table and makes it a low cost

operation.

Parallel Algorithm:Given two strings of length m and n,

a distance table D of size (m+1, n+1) is built in following

steps:

(1) Build MI
u,n

 by computing each of its row in

parallel.

(2) Build D row by row. Compute an individual row

in parallel according to Theorem 1

Now it will be possible to simultaneously compute each

cell in a row of table D.

Analysis: Given two strings of length ‘m’ and ‘n’, our

new parallel algorithm is capable of computing a complete

row of D in parallel so the computation of all the cells in a

row can be distributed among processing nodes. In this

way, the computation of D can be completed in min(m,n)

iterations because it is always possible to take max(m,n)

as the rows of the table. Whereas, state-of-the-art parallel

algorithm that is based on diagonal approach has max(m,n)

iterations. This phenomenon will be dominant when

lengths of both the strings mismatch greatly, hence our

algorithm will significantly perform better than diagonal

based algorithm.

Another facet of the algorithm is its load balanced

approach. Each iteration of the algorithm has same amount

of computation so all the independent tasks in a single

iteration can be distributed uniformly among the

processing nodes. On the other hand, diagonal based

parallel algorithm lacks this feature.

Our algorithm will also have an additive advantage in

implementation. As the algorithm processes row by row,

it can always exploit spatial locality in underlying memory

system. The diagonal based algorithm requires to access

cells from different rows and columns in its each iteration

and that will always increase cache misses.

5. IMPLEMENTATION AND RESULTS

The algorithm is implemented for shared memory

environment using OpenMP in conjunction with C++.

OpenMP has emerged as a shared-memory standard and

it is programming language tailored for a shared-memory

multiprocessing so it is a natural fit compared to other

API’s.

The implementation is run on Intel Core-i3-2370M 2.40

GHZ having 2 cores and 4 logical processors and results

are compared with sequential algorithm and diagonal

parallel algorithm. The algorithm is utilizing CPU more

than 90% so with increased computing power i.e. number

of processors, this algorithm will perform even better.

Strings are generated randomly of equal sizes and results

are averages of fifteen experiments.

Results of execution time, speedup, and efficiency are

presented in Fig. 15(a-c). Considering strings of size m

and n, the problem size is defined in terms of m+n. For the

first scenario, m and n are equal. Execution time is

calculated in milliseconds. Speedup is the measure of

increase of performance of parallel algorithm compared

to sequential algorithm. Efficiency is a measure of the

fraction of time for which a processing element is usefully

employed. It is defined as the ratio of speedup to the

number of processing elements. From the results, it is

evident that our algorithm outperforms the state-of-the-

art parallel approach to solve the edit distance problem.

Particularly, it has achieved almost linear speedup that is

result of load balanced feature of our parallel algorithm.

The experiments were also performed for another setting

when the length of both the strings is not equal and

resulting in a rectangular edit distance table. In this setting,

the experiments were performed for different proportion

of m and n assuming αm = n. The á was varied from 2 to

9000. For increasing value of α, the performance of

diagonal based approach becomes closer to the

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
231

A Novel Parallel Algorithm for Edit Distance Computation

It is clear that our algorithm outperforms diagonal based

approach in terms of execution time, speedup, and

efficiency.

(a) EXECUTION TIME

(b) SPEEDUP

(c) EFFICIENCY

FIG. 15. RESULTS AND COMPARISON WHEN M AND N ARE
EQUAL

performance of sequential algorithm whereas, our

algorithm shows consistent behavior for varying values

of á. The results presented in Fig. 16(a-c) are for α = 5000.

(a) EXECUTION TIME

(b) SPEEDUP

(c) EFFICIENCY

FIG. 16. RESULTS AND COMPARISON FOR
A = 5000

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
232

A Novel Parallel Algorithm for Edit Distance Computation

6. CONCLUSION

Our novel parallel approach to compute edit distance

is a load balanced approach that effectively utilizes

the underlying computing resources. It exploits cache

management of the architecture by working only in

rows. It provides significant additive advantages when

problem size is huge and particularly when the length

of one string is quite large as compared to other. The

results of implementation in OpenMP are promising

and show improved performance as compared to state-

of-the-art diagonal based approach. Further, we plan

to implement and test our algorithm for varying parallel

computing platforms. We also intend to use our

algorithm to solve some real life problems that are based

on edit distance.

ACKNOWLEDGEMENT

The authors are thankful to the Punjab University College

of Information Technology, University of Punjab, Lahore,

Pakistan, for providing necessary infrastructure to

conduct this research.

REFERENCES

[1] Lan, H., Chan, H.,Xu, Y., Schmidt, K., Peng, B., and Liu,

W., “Parallel Algorithms for Large-Scale Biological

Sequence Alignment on Xeon-Phi Based Clusters”, BMC

Bioinformatics, Volume 17, No. 9, pp. 11-23, 2016.

[2] Qu, J., Zhang, G., Fang, Z., and Liu, J., “A Parallel

Algorithm of String Matching Based on Message Passing

Interface for Multicore Processors”, International

Journal of Hybrid Information Technology, Volume 9,

No. 3, pp. 31-38, 2016.

[3] Mitani, Y., Ino, F., and Hagihara, K., “Parallelizing Exact

and Approximate String Matching via Inclusive Scan on

a GPU”, IEEE Transactions on Parallel and Distributed

Systems, Volume 28, No. 7, pp. 1989-2002, 2017.

[4] Yang, C., and Zhang, K., “Parallel Approaches to Edit

Distance and Approximate String Matching”, Carnegie

Mellon University, 2014.

[5] Dhraief, A., Issaoui, R., and Belghith A., “Parallel

Computing the Longest Common Subsequence (LCS) on

GPUs: Efficiency and Language Suitability”, 1st

International Conference on Advanced Communications

and Computation, 2011.

[6] Yang, J., Xu, Y., and Shang, Y., “An Efficient Parallel

Algorithm for Longest Common Subsequence Problem

on GPUs”, Proceedings of World Congress on

Engineering, London, UK, 2010.

[7] Kloetzli, J., Strege, B., Decker, J., and Olano, M.,

“Parallel Longest Common Subsequence using Graphics

Hardware”, Eurographics Symposium on Parallel

Graphics and Visualization, 2008.

[8] Churchill, D., Gillard, P., Hamilton, M., and Wareham,

T., “Prototyping Parallel Sequence Edit Distance

Algorithms in FPGA Hardware”, Proceedings of

14thAnnual New Found Land Electrical and Computer

Engineering Conference, 2004.

[9] Niewiarowski, A., and Stanuszek, M., “Parallelization of

the Levenshtein Distance Algorithm”, Technical

Transactions, Volume 3-NP, pp. 109-122, 2014.

