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I.                      INTRODUCTION  

Cycle discrepancy is a graph invariant which was 
first introduced in (Abbasi, and Aslam, 2011). The area 

of Combinatorics has a branch of discrepancy theory 

and the concept of cycle discrepancy is inspired from 

that. The objective of discrepancy theory is to study the 

deviations from the state of absolute uniformity. Assume 

we are given a set Q and a set R which contains some 

subsets of Q. An important question in discrepancy 

theory is to divide the set Q in a way that every element 

of R is divided as equally as possible. For the sake of 

dividing Q into two parts we take two labels say b1 and 

b2 and define a mapping from elements of Q to the set 
{b1, b2}. Let us call this mapping as a labeling. If we 

choose a labeling 𝛽: 𝑄 → {𝑏1, 𝑏2}, then each element of 

R would also get these labels for their member elements. 

For each element of R compute the absolute difference 

between number of elements getting label b1 and 

number of elements getting label b2. The maximum 

amount of difference obtained would be the discrepancy 

of the labeling β. In this way every possible labeling 

would have a value of discrepancy. If we note the 

minimum value of discrepancy achieved by any possible 

labeling, it represents the discrepancy of the set system 

(Q, R). In this setting Q is normally called the ground 
set. If the set R is obvious from the context, we normally 

refer the discrepancy of the set system (Q, R) as 

discrepancy of Q. The reader is referred to (Beck, and 

Chen, 1987) (Chazelle, 2000) (Matoušek, 1999) (Chen, 

et al., 2014) and for a further detailed insight about the 

discipline of discrepancy theory. The foundational work 

in this area can be found in (Beck and Fiala, 1981) 

(Spencer, 1985) 
 

Consider a graph G = (V,E), where V denotes the 
collection of nodes and E represents the collection of 
edges in the graph. Assume that the ground set is the set 
of nodes of G that is V and call Cto be the collection of 
all cycles in the graph. Take any subset of nodes, say Ci 
as members of set system (C), if Ci is a cycle in the 
graph then the discrepancy of the set system (V, C) is 
known as cycle discrepancy of the graph. Cycle 
discrepancy of a graph G, is denoted as cycdisc(G). It is 
the nature of set system involved in defining cycle 
discrepancy due to which graph theoretic tools and 
methodology is normally useful for investigating this 
invariant.  

 
A graph is called cubic if every node of the graph 

has degree exactly three. In (Abbasi, and Aslam, 2011) a 
tight upper bound of (𝑛 +  2)/6 is established for cycle 
discrepancy of a cubic graph with ‘n’ nodes. It means 
that a cubic graph on ‘n’ nodes can have cycle 
discrepancy of (𝑛 +  2)/6 at most and further there are 
such cubic graphs which exhibit this bound.  

 
Cycle discrepancy of three colorable graphs is 

studied in (Aslam, et al., 2016) and a tight bound of 2 ×
⌈⌊𝑛/3⌋/2⌉ is established. It means, if a graph is three 
colorable then it cannot have cycle discrepancy more 
than 2 × ⌈⌊𝑛/3⌋/2⌉ and there are three colorable graphs 
which exhibit this bound.  

 
If a cubic graph is also a Toeplitz graph then it is 

shown in (Aslam, et al., 2018) that it can have cycle 
discrepancy at most one. Further such cubic Toeplitz 
graphs are presented which have odd cycles thus the 
cycle discrepancy of one.   
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In (Lovász, 2018) and (Clerk 1973), it is shown that 
computing combinatorial discrepancy is NP-hard. By 
using graph theoretic methods, it is shown in this paper 
that computing cycle discrepancy is also NP-hard. For a 
given graph to determine that it has a Hamiltonian cycle 
or not is a famous NP-complete problem. This problem 
is used in this paper to establish the NP-hardness of the 
problem of computing cycle discrepancy of a given 
graph. Reader is referred to (Beck,. and Sós, 1995) and 
(Stark, 2018)  for some latest results showing NP-
hardness of problems in different areas.  

 

The next section provides the required definitions, 

assumptions, and some preliminary work which is 

useful in establishing the results of this article. The 

Section 3 provides the argument to establish that 

computing cycle discrepancy is an NP-hard problem. 

After that Section 4 briefly concludes the work. 

 

2.            DEFINITIONSAND PRELIMINARIES 
The concept of cycle discrepancy is defined in for 

undirected, loop-less graphs without multiple edges. 
This assumption of simple undirected graphs is also 
carried in this work. The notation of graph theory used 
here is inspired from the famous graph theory book 
(Mesmay, et al., 2018)   

 
A decidable version of a problem is one which can 

be answered (decided) simply by yes or no. The set of 
all such problems which can be decided in polynomial 
time is normally referred as class P.  Whereas, set of all 
such problems whose solution can be verified in 
polynomial time are normally referred collectively as 
class NP. If a problem D is member of class NP and all 
the members of class NP are polynomial time reducible 
to D then D is called an NP-complete problem. If a 
problem does not belong to class NP but all members of 
class NP are polynomial time reducible to it then such 
problem is referred as an NP-hard problem. 

 
The mapping of the set of nodes of a graph to the set 

{+1, −1} is called labeling of the graph. Instead of using 
+1 we simply use ‘+’and instead of using −1 we simply 
use ‘ − ’, without changing the meaning. Assume a 
labeling, τ, of a given graph G, then for a subset, M, of 
nodes of G we can define: 

 

𝝉(𝑴) = ∑ 𝝉(𝒗)

𝒗∈𝑴

 

 
Note that 𝜏+(𝑀) = 𝜏(𝑀)  and  𝜏−(𝑀) =

−𝜏(𝑀).Each cycle in G is defined by a subset of nodes 
of G. Define a set YG containing all cycles of G. Cycle 
discrepancy of the labeling, 𝜏, is defined as:  

 

𝒄𝒚𝒄𝒅𝒊𝒔𝒄(𝝉) = 𝐦𝐚𝐱
𝑴∈𝒀𝑮

|𝝉(𝑴)| 

For a graph, G = (V, E), the measure of cycle 
discrepancy which is represented by 𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝐺) can be 
defined as:  

 

𝒄𝒚𝒄𝒅𝒊𝒔𝒄(𝑮) = 𝐦𝐢𝐧
𝝉:𝑽→{+,−}

𝒄𝒚𝒄𝒅𝒊𝒔𝒄(𝝉) 

It is important to note that cycle discrepancy of any 
graph which is bipartite will always be zero and the 
converse is also true. A graph always has cycle 
discrepancy which is greater or equal to the cycle 
discrepancy of any of its sub-graphs. That means if a 
graph has an odd cycle then cycle discrepancy of such 
graph would be greater than or equal to one.  

 

Theorem 1 from is used in this work. It is 
reproduced here for the convenience of reader. Here, 
∆(𝐺), denotes maximum degree of a node in the graph, 
G. The graph constructed in the proof of this theorem is 
like the one shown in (Fig. 1) with t number of triangles. 
The degree three nodes of triangles in the Fig. 1 are 
referred as xi and zi in the Theorem 1.  

 
 

 
Fig. 1: A chain of t triangles connected in a cycle. 

 
Theorem 1: [Theorem 1 ] 

“For every 𝑛 =  3𝑡  there exist a graph, G, such 

that ∆(𝐺) ≤ 3  and𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝐺 ) ≥ 𝑡/2  ” 
 
Proof: 
“Let 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡)  be a graph on 𝑉𝑡 =

{𝑥0, 𝑦0, 𝑧0, ⋯ , 𝑥𝑡−1, 𝑦𝑡−1, 𝑧𝑡−1} consisting of t triangles 
connected in a cycle (See Fig. 1). Let 𝜒: 𝑉𝑡 ↦ {+, −} be 
any labeling of Gt. Consider two cycles C+ and 𝐶− . The 
cycle C+ goes through all the vertices 𝑥𝑖 , 𝑧𝑖  and also 
includes all 𝑦𝑖such that 𝜒(𝑦𝑖) = +. Similarly, 𝐶− goes 
through all the vertices 𝑥𝑖 , 𝑧𝑖  and includes all the 𝑦𝑖 
with  𝜒(𝑦𝑖) = − . Thus 𝜒+(𝐶+) + 𝜒−(𝐶−) = 𝑡 . This 
implies that 

 

𝝌+(𝑪+) ≥ ⌈
𝒕

𝟐
⌉ 𝒐𝒓 𝝌−(𝑪−) ≥ ⌈

𝒕

𝟐
⌉. ” 

3.                RELATED WORK 

To establish the NP-hardness of the problem of 
computing cycle discrepancy one has to prove that any 
problem belonging to class NP is reducible to the 
problem of computing cycle discrepancy in polynomial 
time. Another way to achieve this task is to show that an 
established NP-complete problem is polynomial time 
reducible to the problem of computing cycle 
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discrepancy of a graph. Over here we would use the 
later approach. The famous NP-complete problem 
(Garey, and Johnson, 1979), to decide a graph being 
Hamiltonian or not, would be used. Let R1 be the 
Hamiltonian problem which can be formally stated as: 
given a graph G, does G has a Hamiltonian cycle? Let 
R2 be the decision version of the problem of computing 
cycle discrepancy which can be stated as: given a graph 
G, does 𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝐺) > 𝑘? Where k is a constant. Note 
that, to establish that R2 is NP-hard, it is sufficient to 
show that R1 is polynomial time reducible to R2. 

 
Theorem 2:  
Given a graph G, and a constant k, it is NP-hard to 

decide that 𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝐺) > 𝑘. 
 
Proof: 
Let 𝐺 = (𝑉, 𝐸)be a graph on n nodes. We call G to 

be a Hamiltonian graph if it has a Hamiltonian cycle. By 
using a gadget this graph would be transformed in to 

𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇) in polynomial time. Then it is shown that 
G is a Hamiltonian graph if 

 

𝒄𝒚𝒄𝒅𝒊𝒔𝒄(𝑮𝑻) ≥
𝒏𝒓

𝟐
− 𝒏. 

And in that case G is a Hamiltonian graph. This 
would complete the polynomial time reduction proving 
that computing cycle discrepancy is NP-hard. 

 
The given graph G, has n nodes. We take an even 

number r which is very large as compared to n. A 
triangle is a complete graph on three nodes. Make a 
chain by connecting r triangles in a row using extra 
edges as shown in Fig. 2(a). Now replace every edge of 
G with a chain of r triangles to make a new graph named 
GT. The graph G has n nodes while GT has nT = n + 3er 
nodes. The graph G has E edges while GT has ET = e(3r 
+ 2) edges because every edge of G is replaced by a 
chain containing 3r edges and two edges are used to 
connect that chain with the original nodes.  

 

 
 

Fig. 2: (a) Chain of r triangles used as a gadget to replace edge (u, v). (b) The purposed labeling of the chain gadget. 

 
 

(Fig. 2(a) shows how an edge (u, v) is substituted by 
a gadget (chain of triangles).If G is a Hamiltonian graph 
with, CH, as a Hamiltonian cycle in it then CH would 
contain n number of edges of G. The graph GT would 
have a sub-graph corresponding to CH containing n 
nodes connected by n chains each consisting of r 
triangles. Each chain would add at least 𝑟/2  in 
the  𝑐𝑦𝑐𝑑𝑖𝑠𝑐(𝐶𝐻)  because of Theorem 1. The cycle 
discrepancy of CH would decrease by n by non-triangle 
nodes in the worst scenario. As there are n chains in CH, 
which is a sub-graph of GT, we may write:  

 

𝒄𝒚𝒄𝒅𝒊𝒔𝒄(𝑮𝑻) ≥ 𝒄𝒚𝒄𝒅𝒊𝒔𝒄(𝑪𝑯) ≥ 𝒏
𝒓

𝟐
− 𝒏. 

 

Conversely, if G is not a Hamiltonian graph then any 
cycle in such graph would contain no more than 𝑛 − 1 
edges. If we consider the longest possible cycle of G 
then in GT, the corresponding sub-graph, CF, would have 
𝑛 − 1 nodes connected via 𝑛 − 1 chains each consisting 
of r triangles. Note that in GT no cycle can contain more 

than 𝑛 − 1  non-triangle nodes, hence cannot pass 
through more than 𝑛 − 1 chains. Now we would give a 
labeling, 𝜏, of GT. The labeling 𝜏 would assign labels to 
the nodes of GT as following.  

 
There are n non-triangle nodes. Label ‘+’ to 𝑛/2 

such nodes and label ‘−’ to the 𝑛/2 remaining such 
nodes. In every chain, nodes having degree three make a 
path. Label nodes ‘+’ and ‘−’ on such path alternatingly. 
In every chain gadget of GT, 𝑟/2 degree two nodes are 
labeled ‘+’ and the remaining 𝑟/2  such nodes are 
labeled ‘−’. An illustration of the labeling 𝜏 is shown in 
Fig. 2(b). It can be easily observed that any cycle in GT 
has discrepancy at most 

 

(𝒏−𝟏)𝒓

𝟐
+ 𝟏. 

For this reason we may write: 
 

𝝉(𝑪𝑭) <
(𝒏−𝟏)𝒓

𝟐
+ 𝒏. 
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As r is very large as compared to n, we may write: 
 

     𝒄𝒚𝒄𝒅𝒊𝒔𝒄(𝑮𝑻) <
(𝒏−𝟏)𝒓

𝟐
+ 𝒏 <

𝒏𝒓

𝟐
− 𝒏.   

4.                 CONCLUSIONS 

In this paper a polynomial time reduction from 

Hamiltonian problem to problem of computing cycle 

discrepancy of a graph is presented. As Hamiltonian 

problem is a famous NP-complete problem, it is 

established via this polynomial time reduction that it is 

NP-hard to compute cycle discrepancy of a given graph. 
 

5.             ACKNOWLEDGMENT 

The first author is thankful to Dr. Sarmad Abbasi for 

his time and discussion on this work.All the authors are 

grateful to Punjab University College of Information 

Technology for providing support and infrastructure to 

conduct this research work. 

 

REFERENCES: 

Abbasi,A. and L. Aslam, (2011) “The cycle 

discrepancy of three-regular graphs”, Graphs and 

Combinatorics, Vol. 27, 27–46,. 

 

Aslam, L., S. Sarwar, M. M. Yousaf, and W. Qounain, 

(2016) “Cycle discrepancy of d-colorable graphs”, 

Pakistan Journal of Engineering & Applied Sciences, 

Vol. 18, 50-55,. 

 

Aslam, L., S. Sarwar, M. M. Yousaf, and S. W. Jaffry, 

(2018) “Cycle Discrepancy of Cubic Toeplitz Graphs”, 
Pakistan Journal of Engineering and Applied Sciences, 

Vol. 22, 14-19,. 

 

Beck, J. and W. L. Chen, (1987) “Irregularities of 

distribution”, Cambridge University Press, New York. 

 

Bollobás, B. (1988). “Modern Graph Theory”  

Springer-Verlag,  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Beck, J. and W. Fiala, (1981) “Integer making 

theorems. Discrete Applied Mathematics”, Vol. 3, 1-8. 

 

Chazelle, B. (2000) “The discrepancy method: 

randomness and complexity”, Cambridge University 
Press, New York. 

 

Chen, W., A. Srivastav, and G. Travaglini, (2014) “A 

panorama of discrepancy theory. Lecture notes in 

mathematics”, Springer International Publishing,. 

 

Clerk M., (1973) A Treatise on Electricity and 

Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 68–73,. 
 

Garey, M. R. and D. S. Johnson, (1979) “Computers 
and Intractability: A Guide to the Theory of NP-

Completeness”, A Series of books in the mathematical 

sciences. W. H. Freeman. 
 

Lovász, L. (2018) “Coverings and colorings of 

hypergraphs”, Proceedings of the Fourth Southeastern 

Conference on Combinatorics, Graph Theory, and 
Computing, Utilitas Math., Winnipeg, Man, 3-12.J.  

 

Matoušek, J. (1999) “Geometric discrepancy: an 

illustrated guide (Algorithms and Combinatorics)”, 

Springer, Berlin,. 
 

 

Mesmay, A., Y. Rieck, E. Sedgwick, and M. Tancer, 

(2018) “Embeddability in R3 is NP-hard”, Proceedings 

of the Twenty-Ninth Annual ACM-SIAM Symposium 

on Discrete Algorithms, pp. 1316-1329,. 
 

Spencer, J. (1985) “Six standard deviations suffice”, 

Transactions of the American Mathematical Society, 

Vol. 289, .679-706,. 
 

Stark, C. J. (2018) “Learning Optimal Quantum Models 

is NP-hard”, Physical Review A, Vol. 97, Issue 2, 
020103-1-4,  

 

L. ASLAM  et al.,                                                                                                540                                                                                                                                                                            


	I.                      INTRODUCTION
	2.            DEFINITIONSAND PRELIMINARIES
	3.                RELATED WORK
	4.                 CONCLUSIONS
	5.             ACKNOWLEDGMENT
	REFERENCES:


