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Abstract: Trust is usually viewed at an individual level in the sense of an agent 

having trust in a certain trustee. It can also be considered at a population level, 

in the sense of how much trust for a certain trustee exists in a given population 

or group of agents. The dynamics of trust states over time can be modelled per 

individual in an agent-based manner. These individual trust states can be aggre-

gated to obtain the trust state of the population. However, in an alternative way 

trust dynamics can be modelled from a population perspective as well. Such a 

population-level model is much more efficient computationally. In this paper 

both ways of modelling are investigated and it is analyzed how close they can 

approximate each other. This is done both by simulation experiments and by 

mathematical analysis. It is shown that the approximation can be reasonably ac-

curate, and for larger numbers of agents even quite accurate. 

1 Introduction 

Trust is a concept that is usually considered as a means to aggregate experiences with 

particular issues (trustees), such as other agents or services; e.g., [23, 25, 27]. A trust 

value can be taken into account in decisions, for example, when deciding on coopera-

tion with other agents. A variety of computational models for trust dynamics has been 

developed; see e.g. [8, 15, 16, 21, 22]. Trust can be considered at the individual level, 

but also at a collective level for a population as a whole, for example when decisions 

are made by voting. When a population of agents is considered, the dynamics of trust 

in a certain trustee can be modelled from two perspectives: from the agent-based per-
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spective and from the population-based perspective. From the agent-based perspective 

each agent has its own characteristics and maintains its own trust level over time. 

From the population-based perspective one trust level for the whole is maintained 

over time, depending on characteristics of the population. For both cases dynamical 

models can be used to determine the trust levels over time. For the agent-based per-

spective, each agent has its own dynamical model (for example, expressed as a system 

of N sets of differential equations with N the number of agents, one for each agent 

describing temporal relations for the agent’s states), whereas for the population-level 

one model (for example, expressed as one set of differential equations describing 

temporal relations for population states) can be used. From the agent-based model, by 

aggregation of the individual agent trust states, a collective trust level for the popula-

tion as a whole can be determined, for example, by taking the average of the trust 

levels over all agents. Note that this distinction is different from the distinction agent-

based vs equation-based made in [20]. In their case the criterion is more on the form 

in which the model is specified:  
 

‘The differences are in the form of the model and how it is executed. In agent-based 

modeling (ABM), the model consists of a set of agents that encapsulate the behav-

iors of the various individuals that make up the system, and execution consists of 

emulating these behaviors. In equation-based modeling (EBM), the model is a set of 

equations, and execution consists of evaluating them.’ [20, p. 10] 

 

In the distinction used in the current paper the criterion is not on the form in which the 

model is specified (both can be specified by equations) but on whether the concepts 

used in the model refer to states of an individual agent, or to states of the population 

as a whole. For example, if an epidemics model uses three concepts or variables that 

indicate the total numbers of susceptible persons, infectuous persons and recovered 

persons, then these concepts or variables refer to population states, independent of 

whether dynamical relations between them are specified in logical, numerical or other 

formats. The model then is a population-level model. If instead in a model there are 

concepts or variables for each individual agent, for example that agent A is suscepti-

ble, then the model is agent-based, again independent of the format in which relations 

between these concepts are specified. 

Within application disciplines such as Biology, Economics, and Medicine, the 

classical dynamical modeling approaches for simulation of processes in which larger 

numbers of agents are involved are population-based: a population is represented by a 

numerical variable indicating its number or density (within a given area) at a certain 

time point. The dynamical model takes the form of a system of difference or differen-

tial equations for the dynamics of these variables. Well known classical examples of 

such population-based models are systems of difference or differential equations for 

predator-prey dynamics [e.g., 4, 18, 19, 26] and the dynamics of epidemics [e.g., 1, 4, 

7, 17]. Historically such population level models are specified and studied by simula-

tion and by numerical-mathematical techniques. 

The agent-based perspective often takes as a presupposition that simulations based 

on individual agents are a more faithful way of modelling, and thus will provide better 

results [e.g., 2, 6, 23]. Although for larger numbers of agents agent-based dynamical 



modelling approaches are more expensive computationally than population-based 

modelling approaches, such a presupposition provides a justification of preferring 

their use over population-based modelling approaches: agent-based approaches with 

larger numbers of agents are justified because the results are expected to be more 

realistic than the results of population-based simulation. This may not work the same 

for smaller and for larger numbers of agents. For larger numbers of agents, by some 

form of averaging, population-based simulations might be an adaequate approxima-

tion of agent-based simulations . If so, for applications with larger numbers of agents 

in which the agent-based model is difficult to use due to its computational complex-

ity, this implies that population-based simulation would be a good choice. However, 

there are also many cases that the agent-based approach has a manageable complex-

ity, and then the choice may be made to use an agent-based approach. 

In this paper above assumption is explored in a detailed manner for a population of 

agents that receive direct experiences from a trustee and also get communicated in-

formation from other agents about their trust in this trustee. On one hand an analysis 

is performed that makes use of a variety of simulation experiments for different popu-

lation sizes and different distributions of characteristics while on the other a mathe-

matical analysis of equilibria of both types of models is used to find out differences 

between the two. Roughly spoken, the outcome of both type of investigations are that 

in general the differences are not substantial, and that they are smaller the larger the 

number of agents is. In Section 2 the two types of trust models used are introduced 

which incorporate direct and indirect experiences. In Section 3 the simulation experi-

ments are described. Section 4 presents the mathematical analysis of equilibria. Sec-

tion 5 concludes the paper. 

2 Modelling Trust Dynamics from Two Perspectives 

In this section trust models for both perspectives are introduced. The basic underlying 

trust dynamics model adopted in this paper depends on receiving experiences E(t) 

over time as follows: 

                                 (1) 

Here T(t) and E(t) are the trust level for a trustee and the experience level given by the 

trustee at time point t. Furthermore, γ is a personal characteristic for flexibility: the 

rate of change of trust upon receiving an experience E(t). The values of T(t), E(t) and 

γ are in the interval [0, 1] where 0 value for E(t) and T(t) means absolute bad experi-

ence and no trust at all while 1 for E(t) and T(t) means absolute positive experience 

and absolute trust respectively. In differential form change of trust over time can be 

expressed by: 

 
  

  
         (2) 

This basic model is based on the experienced-based trust model described in [14], 

and applied in [23, 24, 26]. In an agent’s received experience, experiences are taken 



to be of two forms: direct experiences, for example, by observation, and indirect ex-

periences obtained from communication. Here the model presented in (2) is applied in 

both cases where trust updates is only based on direct experience received from the 

trustee and where it depends on both direct and indirect experiences received from 

trustee and other agents. Incorporating this, the basic model can be applied to each 

single agent within the population (agent-based perspective), or to the population as a 

whole (population-based perspective), as discussed below. 

2.1 The Agent-Based Trust Model using Direct Experience  

In this section the agent-based trust model is described for a trustee. Each of the 

agents updates its trust on a given trustee upon receiving an experience from this trus-

tee. The trust model described above is taken and indexed for each agent A in the 

group: 

  
 
        

 
      

 
    

 
     

 
        (3) 

Note that each agent can have its personal flexibility characteristic A in interval [0, 

1]. It is assumed that these values have some distribution over the population. More-

over each agent may have its own experiences EA(t); however, in this paper these are 

assumed the same for all agents. 

Using the agent-based model a collective trust value TC(t) for the population of N 

number of agents as a whole can be obtained by aggregation of the trust values over 

all agents (taking the average): 

 
 
    

 

 
   

 
    

    (4) 

2.2 The Population-Based Trust Model using Direct Experience 

In this section the population-based model of trust used is described. Besides the ex-

perience given by the trustee to a population P, the dynamics of population level trust 

are influenced by the characteristics of the population [12]. Here P is defined as a 

population of N agents receiving same experiences from a trustee and/or communicat-

ing with each other. A population level model has to aggregate the diversity of the 

population. The proposed population-based model of trust carries all dynamics as 

described in base model as follows: 

  
 
        

 
                 

 
        (5) 

Here TP(t) is the collective trust of whole population on a given trustee at time point t, 

and the population-level flexibility characteristic    is an aggregate value for the in-

dividual flexibility characteristics    for all agents present in P (e.g., the average of 

the    for AP). Conceptually this can be interpreted as if the population as a whole 

is represented as one agent and receives experiences from the trustee and updates its 

trust on the trustee according to equation 5. Note again that the experience levels EP(t) 



and EA(t) for the population P and all individual agents A are assumed to be the same. 

Therefore the index for E(t) can be left out. 

2.3 An Agent-Based Trust Model Incorporating Indirect Experience 

In the agent-based trust model for a trustee described here, each of the agents updates 

its trust on a given trustee based on receiving an experience for this trustee and com-

bines a direct experience and an opinion received by the peers about the trustee (indi-

rect experience). Direct and indirect experiences at each time point are aggregated 

using agents’ personality characteristic called social influence denoted by αA as fol-

lows:  

  
 
         

              
     (6) 

Here EA(t), EA
d
(t) and EA

i
(t) are the aggregated experience, the direct experience 

received from the trustee and the indirect experience received by the agent A as the 

opinions of its peers about trustee at time t respectively. The social influence (αA) can 

have value in the interval [0, 1] where 0 value for αA means agent will only consider 

direct experiences while 1 means only indirect experiences would be counted in 

agent’s aggregated experiences. The indirect experience EA
i
(t)  received by the agent 

A as the opinions of its peers about trustee at time point t is taken the average of the 

opinions given by all the peers at time point t: 

   
     

      
 
            

     
 (7) 

Here OB(t) is the opinion received by the agent A from an agent B about the trustee at 

time point t and N is the total number of agents in the population. The opinion given 

by the agent B to the agent A at time t is taken as the value of the trust of B on trustee 

at time t, e.g. OB(t) = TB(t), hence equation 7 will become as follows: 

   
     

      
 
            

     
  (8) 

The aggregated experience received by agent A at time point t as expressed in 

equation (6) is used to update current trust level of the agent A at trustee using trust 

model presented in equation 3 as follows:  

  
 
        

 
      

 
    

 
     

 
        (9) 

Here the basic trust model is indexed for each agent A in the group. Note that each 

agent can have its personal flexibility characteristic A. It is assumed that these values 

have some distribution over the population. Based on this agent-based model a collec-

tive trust value TC(t) for the population as a whole can be obtained by aggregation of 

the trust values over all agents (taking the average): 

       
      
 
   

 
  (10) 



2.4 A Population-Based Trust Model Incorporating Indirect Experience 

To apply the basic trust model to obtain a population-based model of trust, its ingredi-

ents have to be considered for the population P as a whole, for example, the (direct 

and indirect) experience given by the trustee to a population P, and the characteristics 

P of the population [9, 12] this is done as follows: 

  
 
        

 
                 

 
        (11) 

Here TP(t) is the trust of population P on a given trustee at time point t, and the popu-

lation-level flexibility characteristic    is taken as an aggregate value for the individ-

ual flexibility characteristics    for all agents A in P (e.g., the average of the    for 

AP). This can be interpreted as if the population as a whole is represented as one 

agent who receives experiences from the trustee and updates its trust on the trustee 

using the basic model. The experience at population level EP(t) at time point t for the 

population P is defined as the combination of the direct and the indirect experience at 

population level as follows: 

            
              

     (12) 

In equation (12),   
     and   

     are the indirect and direct experience at the popula-

tion level. Moreover, αP is the population-level social influence characteristic. Here 

also αP is taken as an aggregate value for the individual social influence characteris-

tics αA for all agents present in P (e.g., the average of the αA for AP). At the popula-

tion level the indirect experience   
     obtained from communication by the other 

agents of their trust is taken as the population level trust value at time point t as fol-

lows: 

   
            (13) 

2.5 Computational Complexity Estimation 

The computational complexity of the agent-based trust model differs from that of the 

population-based trust model. Computational complexity of the agent-based trust 

model depends on the number of agents while population-based model is independent 

of this. These complexities can be estimated as follows, if  τ is the total number of 

time steps, and N the number of agents in the population, the time complexities of the 

agent-based trust model based on direct experience, agent-based trust model incorpo-

rating indirect experience and population-based trust models are O(Nτ), O(N
2
τ) and 

O(τ) respectively. This indicates that for higher numbers of agents in a population the 

agent-based model is computationally much more expensive than the population-

based model. 



3 Simulating and Comparing the Two Approaches 

A number of simulation experiments have been conducted to compare the agent-based 

and population-based trust models as described in the previous sections. This section 

presents the experimental setup and results from these experiments. 

3.1 The Experimental Setup for Trust models incorporating direct 

experiences 

Several simulation experiments have been performed to analyze and compare the 

behaviour of the two approaches. For these simulation experiments a system was 

created as described in Fig. 1. Here it is assumed that a trustee S gives similar experi-

ences E to both models at each time point. In the population-based trust model this 

experience E is used to update the population-level trust of S according to the equa-

tions presented in the last section, while in the agent-based trust model this experience 

is received by every agent in the system and each agent updates its trust on the trustee, 

which by aggregation leads to update of the collective trust of the trustee. 

 

 

Fig. 1. Agent and Population based trust model 

In Fig. 1, agent P carries the population-based trust model while agents A1, A2, A3 

… An carry the agent-based trust model as described in the previous Sections 2.1 and 

2.2. Every agent in the system is assigned an initial trust value TA(0) and the value for 

the agent’s flexibility parameter γA at the start of the simulation experiment. The value 

TP(0) for the initial population-level trust and the population-level flexibility parame-

ter γP for the agent P of the population-based trust model are taken as the average of 

the corresponding attributes of all the agents in the community:  

              
   
         (14) 

     

        
   
      (15) 
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S Agent based model 
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Figure 1. Agent and population based trust model 



Here N is the total number of agents in the community. The collective trust of the 

agent-based trust model at any time point t is represented as the average of the trust 

values of all the agents in the community:  

              
   
      (16) 

As a measure of dissimilarity for the comparison of the models their root mean 

square error is measured between the collective agent-level trust and population-level 

trust at each time point t as follows: 

                  
    

      (17) 

In equation (17), TP(t) and TC(t) are the population-level trust and the (aggregated) 

collective agent-level trust of trustee calculated by the population-based and agent-

based model at time point t respectively and M is the total time steps in the simula-

tion.  

To produce realistic simulations, the values for TA(0) and γA of all the agents in the 

agent-based trust model were taken from a discretised uniform normal distribution 

with mean value 0.50 and standard deviation varying from 0.00 to 0.24. In these ex-

periments all agent-based models were simulated exhaustively to see their average 

behaviour against the population-based model. Here the exhaustive simulation means 

that all possible combinations of standard deviations for TA(0) and γA from the interval 

0.00-0.24 were used in the simulations and their respective errors were measured. An 

average error εavg of the models was calculated, which is the average of all root mean 

squared errors calculated with all combinations of TA(0) and γA as follows: 

      
     

                    
 

            

            
 

               

               

   
 (18) 

In equation (18), stDevTA(0) and stDevγA are the standard deviation values used to 

generate the agents’ initial trust values and the agents’ trust flexibility parameters 

from a discretised uniform normal distribution around the mean value of 0.50. Here 

ε(stDevTA(0), stDevγA) is the error calculated for an experimental setup where TA(0) and γA 

were taken using stDevTA(0) and stDevγA as standard deviation for a random number 

generator. Here it can be noted that to obtain the average, this summation is divided 

by 625 which is the number of comparison models generated by all variations in 

stDevTA(0) and stDevγA, e.g. 25*25. 

In order to simulate realistic behaviour of the trustee’s experience E to the agents, 

E was also taken from a discretised uniform normal distribution with mean value of 

0.50 and experience’s standard deviation stDevE from  the interval 0.00 – 0.24. These 

experience values were also taken exhaustively over stDevTA(0) and stDevγA. The algo-

rithm for the simulation experiments is presented below as ALGORITHM S1; it com-

pares the population-based trust model with the agent-based trust model exhaustively 

with all possible standard deviations of stDevE, stDevγA, stDevTA(0) varying in the inter-

val 0.00-0.24 described as follows: 



ALGORITHM S1: ABM AND PBM COMPARISON INCORPORATING DIRECT 

EXPERIENCES 

00: Agent [A1, A2,…An] of ABM, Agent P of PBM, Trustee S; 

01: for all stdDev  from 0.00 to 0.24 

02:  for all stdDev
γ
 from 0.00 to 0.24 

03:   for all stdDev  from 0.00 to 0.24 

04:    for all Agents A in ABM 

05:    initialize T (0) of A from stdDev  

06:    initialize γ  of A from stdDev
γ
 

07:    end for 

08:   initialize T (0) of P with average of T (0) for all 

agents A 

09:   initialize γ  of P with an average of γ  for all 

agents A 

10:   for all time points t 

11:   trustee S gives an experience E from stdDev  

12:   agent P receives E 

13:   agent P updates trust T  of S 

14:    for all agents A in ABM 

15:    A receives experience E 

16:    A updates trust T  on S 

17:    update T  of S using trust T  of A 

18:    end for 

19:   calculate error ε of models using T  and T  

20:   end for 

21:  end for 

22:  calculate average models error ε  for all possible 

models with stdDev
γ
 and stdDev  

23:  end for 

24: calculate average experience level error ε  for all 

experience sequences using ε  

25: end for 

3.2 The Experimental Setup for Trust models incorporating indirect 

experiences 

For the simulation experiments of trust models incorporating indirect experiences a 

setup was used as shown in Fig. 2. Here a trustee S is assumed to give similar direct 

experiences E
d
(t) to both models at each time point t. In the population-based trust 

model this direct experience E
d
(t) is used together with the indirect experience EP

i
(t) 

to update the population-level trust of S according to the equations presented in Sec-

tion 2.4. In the agent-based trust model this experience is received by every agent in 

the system and each agent updates its trust on the trustee using direct experience E
d
(t) 

and indirect experience EA
i
(t) received as opinion of the other agents, as shown in 



Section 2.3. By aggregation the individual trust levels can be used to obtain a collec-

tive trust of the trustee. 

In Fig. 2 P carries the population-based trust model while the agents A1, A2, A3 … 

An, carry the agent-based trust model as described in the previous Sections 2.3 and 

2.4. Every agent in the system is assigned an initial trust value TA(0), a value for the 

agent’s flexibility γA, and for the social influence parameter αA at the start of the simu-

lation experiment. The value TP(0) for the initial population-level trust, the popula-

tion-level flexibility parameter γP and the social influence αA parameter for the popu-

lation-based trust model are taken as the average of the corresponding attributes of all 

the agents in the community: 

       
      
 
   

 
 (19) 
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Here N is the total number of agents in the community. The collective trust of the 

agent-based trust model at any time point t is represented as the average of the trust 

values of all the agents in the community:       
      
 
   

 
. 

 

 

Fig. 2. Agent-based and population-based trust model incorporating communication 

As a measure of dissimilarity for the comparison of the models their root mean 

square error is measured between the collective agent-level trust and population-level 

trust at each time point t as follows 

                  
    

      (22) 

In equation (22), TP(t) and TC(t) are the population-level trust and the (aggregated) 

collective agent-level trust of the trustee calculated by the population-based and 
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Population based model 

P 

Trustee S 

A1 

A3 

A2 

An 



agent-based model at time point t respectively and M is the total time steps in the 

simulation.  

To produce realistic simulations, the values for TA(0), γA and αA of all the agents in 

the agent-based trust model were taken from a discretised uniform normal distribution 

with mean value 0.50 and standard deviation varying from 0.00 to 0.24. In these ex-

periments all agent-based models were simulated exhaustively to see their average 

behavior against the population-based model. Here exhaustive simulation means that 

all possible combinations of standard deviations for TA(0), γA and αA from the interval 

0.00-0.24 were used in the simulations and their respective errors were measured 

against respective population level model. An average error εavg of the models was 

calculated, which is the average of all root mean squared errors calculated with all 

combinations of TA(0), γA and αA as follows. 

      
                                    

            
            

 
            

            
 

               

               

     
 (23) 

In equation (23), stDevTA(0), stDevγA and stDevαA are the standard deviation values 

used to generate the agents’ initial trust values, the agents’ trust flexibility parameter, 

and agents’ social influence parameter  from a discretised uniform normal distribution 

around the mean value of 0.50. Here ε(stDevTA(0), stDevγA, stDevαA) is the error calcu-

lated for an experimental setup where TA(0), γA, and αA were taken using stDevTA(0), 

stDevγA and stDevαA as standard deviation for a random number generator. Here it can 

be noted that to obtain the average, this summation is divided by 15625 which are the 

number of comparison models generated by all variations in stDevTA(0), stDevγA, and 

stDevαA, e.g. 25*25*25. 

In order to simulate realistic behavior of the trustee’s experience E to the agents, E 

was also taken from a discretised uniform normal distribution with mean value of 

0.50 and experience’s standard deviation stDevE from  the interval 0.00 – 0.24. These 

experience values were also taken exhaustively over stDevTA(0), stDevγA, and stDevαA. 

The algorithm for the simulation experiments is presented below as ALGORITHM 

S2; it compares the population-based trust model with the agent-based trust model 

exhaustively with all possible standard deviations of stDevE, stDevγA, stDevTA(0) and 

stDevαA varying in the interval 0.00-0.24 described as ALGORITHM S2. 

ALGORITHM S2: ABM AND PBM COMPARISON INCORPORATING 

INDIRECT EXPERIENCES 

00: Agent [A1, A2,…An] of ABM, Agent P of PBM, Trustee S; 

01: for all stdDev  from 0.00 to 0.24 

02:  for all stdDev
γ
 from 0.00 to 0.24 

03:   for all stdDev  from 0.00 to 0.24 

04:    for all stdDev
α
 from 0.00 to 0.24 

05:     for all Agents A in ABM 

06:     initialize T (0) of A from stdDev  

07:     initialize γ  of A from stdDev
γ

08:     initialize α  of A from stdDev
α

09:     end for [all agents A] 



10:    initialize T (0), γ  and α  of P with average of 

T (0), γ and α  for all agents A 

11:     for all time points t 

12:     trustee S gives experience E(t) from stdDev  

13:     agent P receives E (t) and calculates E (t) 

where E (t) = E(t) 

14:     agent P updates trust T (t) of S 

15:      for all agents A in ABM 

16:      A receives experience E (t)where E (t)=E(t) 

17:       for all agents B in ABM where A≠B 

18:        A gets opinion O (t) from B and aggre-

gate in E (t) 

19:       end for [all agents B] 

20:      A updates trust T (t) on S 

21:      update T (t) of S using trust T (t) of A 

22:      end for [all agents A] 

23:     calculate error ε of models using T (t) and 

T (t) 

24:     end for [all time points t] 

25:    end for [all agents stdDev
α
] 

26:   end for [all stdDev ] 

27:  calculate average models error ε  for all mod-

els(stdDev
γ
, stdDev stdDev ) 

28:  end for [all stdDev
γ
] 

29: calculate average experience level error ε  for all  

  experience sequences using ε  

30: end for [all stdDev ] 

3.3 Experimental Configurations 

In Table 1 the experimental configurations used for the different simulations are 

summarized. All simulations were run for 500 time steps, and were performed for 

different values for the agents in the agent-based model to cover different types of 

populations. The parameter SS for the sample of simulation experiments is taken 25: 

each experiment is run 25 times after which an average is taken. This is meant to undo 

the randomization effects and to get the general average characteristics of the models. 

To obtain a wide variety of possible dynamics of the agent-based trust model the 

agents’ initial trust, the agents’ flexibility, agents’ social influence (in case of indirect 

experience) and the experience with the trustee were taken exhaustively from a uni-

form discretised normal distribution with various standard deviations.  

 

 



Table 1. Experimental configurations 

Name Symbol Value 

Total time steps TT 500 

Number of agents N 10, 20, 30, 40, 50 

Samples of simulation experiments SS 25 

Standard deviation and mean for direct 

experience 

stdDevE, meanE 0.00-0.24, 0.50 

Standard deviation and mean for rate of 

change  

stdDevγ, meanγ 0.00-0.24, 0.50 

Standard deviation and mean for initial trust stdDevT(0),meanT(0) 0.00-0.24, 0.50 

Standard deviation and mean for social 

influence 

stdDevα meanα 0.00-0.24, 0.50 

 

Given the above experimental configurations, time complexity for the simulation 

experiments for the ALGORITHM S1 and S2 are following 

 O(S1) = O(stdDevE . stdDevγ . stdDevTA(0) . TT . N . SS) (24) 

 O(S2) = O(stdDevE . stdDevγ . stdDevTA(0) . stdDevα . TT . N . SS) (25) 

 

For stdDevE, stdDevγ, stdDevTA(0) and stdDevα ranging from 0.00 to 0.24, 500 time 

steps for simulation, 50 agents and 25 samples of simulation the approximate number 

for the instruction count for ALGORITHMS S1 and S2 becomes 9.76 x 10
9
 and 1.22 x 

10
13

 respectively. 

3.4 Simulation Results 

The algorithm S1 and S2 specified in Section 3.1 and 3.2 was implemented in the C++ 

programming language to conduct the simulations experiments using the configura-

tion as described in Table 1, and to compare the agent-based and population-based 

trust models. In this section some of the simulation results are discussed 

3.4.1 Comparison of Trust Models Incorporating Direct Experiences 

In this section results of two experiments are presented for the comparison of trust 

models incorporating direct experiences only.  

3.4.1.1 Experiment 1 - Variation in the values of the agents’ initial trust and trust 

flexibility parameter 

In this experiment the agents’ initial trust and flexibility parameter were taken from a 

discretised uniform normal distribution with mean 0.50 and standard deviation vary-

ing from 0.00 to 0.24. Here it is assumed that the trustee provides a constant experi-

ence value 0.50 at all-time points to each agent in the agent-based model and the 



population-based model. In order to see the effect of the population size on this ex-

periment, this experiment was executed for different numbers of agents, varying from 

10 to 50. Some of the results are shown in the following graphs. In Fig. 3a the hori-

zontal axis represents standard deviation of γA in the agent-based trust model, varying 

from 0.00 to 0.24, and the vertical axis shows the average error between the agent-

based and population-based models for all standard deviations of TA(0) varying from 

0.00 to 0.24 against each standard deviation of γA. In Fig. 3b the horizontal axis repre-

sents the standard deviation of TA(0) of the agent-based trust model, varying from 

0.00 to 0.24 and the vertical axis shows the average error of all standard deviations of 

TA(0) varying from 0.00 to 0.24 for each standard deviation of TA(0).  

From these graphs it can be seen that the error between the agent-based and popu-

lation-based trust model increases when TA(0) or γA of the agent-based model are 

taken from a higher standard deviation value. Also a higher number of agents in the 

agent-based model shows less deviation from the population-based model. Further-

more, the higher peak in the left-hand graph and the higher fluctuation in the right-

hand graph show that the agent-based model is much more sensitive to variation in γA 

as compared to TA(0). 

 

a)

b) 

Fig. 3. a) Effect of variation in γ (stdDevγA vs. εavg)  

b) effect of variation in T(0) (stdDevTA(0) vs. εavg) 



3.4.1.2 Experiment 2 - Variation in the experience value from the trustee 

This experiment is conducted in two parts; a) multiple experiment are conducted 

where trustee gives a different constant experience and then output of the models is 

compared, b) and an exhaustive simulation of experience values given by the trustee 

from a discretised uniform normal distribution with standard deviation stdDevE which 

varies in interval 0.00 to 0.24 around the mean value 0.50 are used. 

a) Case 1: In this experiment the agents’ initial values for trust and the flexibility 

parameter were taken from a discretised uniform normal distribution with mean 0.50 

and standard deviation varying from 0.00 to 0.24. Here it was assumed that the trustee 

provides constant experience value 0.00, 0.25, 0.50, 0.75, and 1.00 at all time points 

to each agent in the agent-based model and the population-based model in five differ-

ent experiments. Also in order to see the effect of the population size on this experi-

ment, this experiment was executed for different numbers of agents varying from 10 

to 50. Some of the results are shown in Fig. 4; here the horizontal axis shows the 

number of agents in the agent-based model while the vertical axis represents the error 

εavg for all models as described in the previous section.  

 

 

Fig. 4. Effect of different experience values  

(Number of agents vs. εavg for different experience values) 

Here it can be seen that upon increase in deviation of the experience value from 

0.50 (upward or downward), the agent-based trust model shows a higher error in 

comparison with the population-based model. It can also be noted that with an in-

crease in the number of agents in the agent-based model, the population-based model 

approximates the agent-based model more accurately, with lower error value. 

b) Case 2: In this experiment an exhaustive simulation was performed where the 

trustee gives experience values from a discretised uniform normal distribution with 

standard deviation stdDevE which is from the interval 0.00 to 0.24 and around the 

mean value 0.50. For each value of stdDevE the agents’ initial trust and flexibility 

parameter were taken from a discretised uniform normal distribution with mean value 

0.50 and standard deviation varying from 0.00 to 0.24 (see ALGORITHM S1). Also 

in order to see the effect of the population size on this experiment, the experiment was 

executed for different numbers of agents varying from 10 to 50. Some of the results 



are shown in Fig. 5; here the horizontal axis shows the number of agents in the agent-

based model, while the vertical axis represents the average εavg of errors for a set of 

models where the trustee gives experience values with standard deviation stdDevE. In 

Fig. 5a, for example, the curve E(0.00-0.04) represents the average error for five 

models when the trustee gave experiences with standard deviation of 0.00, 0.01, 0.02, 

0.03 and 0.04 around mean of 0.50. These values were averaged and shown here for 

the sake of presentation. Here it can be seen that for lower deviation in experience 

value, larger numbers of agents produce a lower error in comparison to smaller num-

ber of agents in the agent-based model, while when the trustee gives experience val-

ues with a higher standard deviation, then higher numbers of agents show a higher 

error as compared to lower numbers of agents in the agent-based model. In Fig. 5b the 

horizontal axis represents the standard deviation in the experience values E given by 

the trustee, varying from 0.00 to 0.24 and the vertical axis shows the average error of 

all models with standard deviations of the agent attributes γA(0) and TA(0) in the 

agent-based model, varying from 0.00 to 0.24. Here it can be seen that upon an in-

crease in standard deviation of experience value given by the trustee, the average 

error between the agent-based and population-based model increases for all popula-

tion sizes. In Fig. 5c the horizontal axis shows the number of agents in the agent-

based model while the vertical axis represents the average errors εavg for all models, 

where the trustee gives experience values with  standard deviation stdDevE (varying 

from 0.00 to 0.24), the agents in the agent-based model have attributes γA and TA(0) 

with standard deviations stdDevγA and stdDevTA(0) (varying from 0.00 to 0.24). Here it 

can be observed that the population-based trust model provides a more accurate ap-

proximation of the agent-based model, when having larger numbers with an exception 

of an agent-based model with very small numbers (10 agents).  

In all these experiments it is observed that the maximum root mean squared error 

between agent-based and population-based trust model does not exceed 0.017959, 

which means that this population-based trust model is a very accurate representation 

of the agent-based model. 

 

 

 

 

 

 



a) 

b) 

c) 

Fig. 5. a) Effect of change in experience for stdDevE in range 0.00 – 0.24 (number of agents vs. 

εavg for different experience values), b) Difference between agent-based and population-based 

trust models upon variation in experience values (stdDevE vs. εavg), c) Average difference (er-

ror) between the agent-based and population-based trust models for all possible standard devia-

tions of stdDevγ, stdDevTA(0) and stdDevE (number of agents vs. average εavg) 

3.4.1.3 Computational time complexity of experiments 

The computation complexities of the experiments described above are primarily based 

on the complexity estimations presented in Section 3.4. It can be observed that that 

the nature of experiments was exhaustive, hence to conduct them on a desktop PC 

would require a large amount of time. So these experiments were conducted on the 



Distributed ASCI Supercomputer version 4, DAS-4 [3]. The computation complexity 

of these experiments are shown in Fig. 5. In this figure the horizontal axis represents 

the different experiments described in the previous sections and the vertical axis 

shows the number of hours required to complete these experiments on a PC and on 

DAS-4. Here it should be noted that for these experiment 25 nodes of DAS-4 were 

utilized. As it can be seen from Fig. 6 all three experiments were expected to take 

approximately 6.41 hours on a single machine while usage of DAS-4 has reduced this 

time to approximately 0.25 hours. 

 

 

Fig. 6. Total computation time required for the simulation experiments incorporating direct 

experiences on PC and DAS-4 

3.4.2 Comparison of Trust Models Incorporating Indirect Experiences 

In this section results of three different experiments are presented for the comparison 

of trust models incorporating direct and indirect experiences.  

3.4.2.1 Experiment 1 - Variation in the experience value from the trustee 

In this experiment exhaustive simulations were performed where the trustee gives 

experience values from a discretised uniform normal distribution around the mean 

value 0.50 with standard deviation stdDevE from the interval 0.00 to 0.24. For each 

value of stdDevE the agents’ initial trust, flexibility and social influence parameters 

were taken from a discretised uniform normal distribution with mean value 0.50 and 

standard deviation varying from 0.00 to 0.24 (see ALGORITHM S2). To see the ef-

fect of the population size on this experiment, the experiment was executed for differ-

ent numbers of agents varying from 10 to 50. Some of the results are shown in Fig. 7.  
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PC 0.206944444 1.034722222 5.173611111

DAS-4 0.008277778 0.041388889 0.206944444
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a) 

b) 

Fig. 7. a) Difference between the two models upon variation in experience values (stdDevE vs. 

average εavg for different number of agents), b) Average difference (error) between the agent-

based and population-based trust models for all possible standard deviations of stdDevγ, 

stdDevTA(0), stdDevα and stdDevE  (number of agents vs. average εavg) 

In Fig. 7a the horizontal axis represents the standard deviation in the experience 

values E given by the trustee, varying from 0.00 to 0.24 and the vertical axis shows 

the average experience level error εE of all models with standard deviations of the 

agent attributes TA(0), γA and αA  in the agent-based model, varying from 0.00 to 0.24. 

Here it can be seen that upon an increase in standard deviation of experience value 

given by the trustee, the average error between the agent-based and population-based 

model increases for all population sizes (from about 0.001 to about 0.004). This error 

values is lower for higher numbers of agents which shows that the population-based 

model is a much better approximation of the agent-based based model for higher 

number of agents. In Fig. 7b the horizontal axis shows the number of agents in the 

agent-based model while the vertical axis represents the average of the experience 

level error εE for all models, where the trustee gives experience values with standard 

deviation stdDevE (varying from 0.00 to 0.24), and the agents in the agent-based 

model have attributes TA(0), γA and αA  with standard deviations stdDevγA, stdDevTA(0), 

and stdDevα (varying from 0.00 to 0.24). Here it can also be observed that the popula-

tion-based trust model provides a (slightly) more accurate approximation of the agent-

based model, when having larger numbers of agents (from about 0.0026 to about 

0.0024).  



In all these experiments the maximum root mean squared error between agent-

based and population-based trust model does not exceed 0.027267, which means that 

this population-based trust model is a quite accurate approximation of the agent-based 

model. 

3.4.2.2 Experiment 2 - Exhaustive mirroring of agent-based model into population-

based model 

In the previous experiment the attribute values of the population-level model were 

simply taken as an average of the attribute values of all agents in the agent-level 

model. However, it cannot be claimed at forehand that this mechanism of abstracting 

the agent-level model is the most accurate aggregation technique. In order to see 

whether there is any other instance of the population-level model that can approxi-

mate the agent-level models better than the one based on aggregating by averaging, 

one has to exhaustively simulate all instances of the population-based model against 

all instances of the agent-based model.  

In this experiment such exhaustive simulations were performed, applying a method 

named as exhaustive mirroring of models, adopted from [10]. In this method first a 

specific trace of the source model for a given set of parameters of source model is 

generated. Next, the target model is exhaustively (for different parameter settings) 

simulated to realize this specific trace of the source model. The instance of the target 

model for specific values of the parameters that generate a minimal error is consid-

ered as the best realization of the target model to approximate the source model. This 

approach is called exhaustive mirroring of one model in the other. 

As stated in [10] this mirroring process gives some measure of similarity of the 

target model against the source model. However, this method of exhaustive mirroring 

is computationally very expensive. So, for practical reasons in this experiment the 

population-based model (target) is exhaustively simulated with only one of the three 

population level parameters, namely the flexibility γP of the population-level trust. 

The other two parameters the population-level (initial trust TP(0) and social influence 

αP) were taken as the average of their counterparts in the agent-level model. Some of 

the results of this experiment are shown in Fig. 8; In Fig. 8a the horizontal axis repre-

sents the exhaustive values for the population-level flexibility parameter γP and the 

vertical axis shows the average experience level error εE of all agent-based models 

with standard deviations of the attributes TA(0), γA, αA  and trustee experience E
d
(t) 

varying from 0.00 to 0.24 with mean value 0.5. Here it can be seen that for lower 

values of γP the average error is much higher and it starts to reduce when γP ap-

proaches to 0.5 and values of γP above 0.5 this error starts to increase. Hence 0.50 is 

the most accurate representation of γP for all agent base models. Further in Fig. 8b 

same graph is shown in a zoomed-in fashion to show the effect of population size on 

error value. Here it is seen that larger populations showed lower error than smaller 

populations. 

 



a) 

b) 

Fig. 8. a) Difference between agent-based and population-based trust models upon change in 

population level flexibility parameter γP  (stdDevγP vs. average εavg for different number of 

agents), b) Zoomed-in version of Fig. 8a 

3.4.2.3 Experiment 3: Comparison for larger populations with numbers up to 500 

agents 

Based on observation from the experiments described above some support was ob-

tained that the value 0.5 for the population-level flexibility parameter γP is the most 

accurate representation of the agent-based model. To get a better impression for the 

limit value of the error for larger populations, in the next experiment the agent-based 

model were simulated for larger populations up to 500 agents in size and compared to 

the population-based model with flexibility parameter γP = 0.5. In this experiment the 

population was varied from 200 to 500 agents with an increment of 10 agents per 

population size. Experimental configurations in this experiment were taken from Ta-

ble 1. Results are shown in Fig. 9; In Fig. 9a the horizontal axis represents the differ-

ent population sizes varying from 200 to 500 agents and the vertical axis shows the 

average difference between agent and population level models. Here it can be seen 

that on an increase in number of agents in population base model difference between 

models decreases from about 0.00229 (for 200 agents) to about 0.00218 (for 500 

agents). It has been analysed in how far the approximation of the limit value for the 

error for larger populations is exponential and how the limit value can be estimated 



from the obtained trend. To this end Fig. 9b depicts for a certain value of e (an as-

sumed limit value) the graph of the logarithm of the distance of the error to e, ex-

pressed as ln(error – e). This graph (in blue) is compared to a straight line (in red). It 

turns out that in 6 decimals the straight line is approximated best for limit value e = 

0.002145, and the approximation of this limit value for e goes exponentially accord-

ing to an average (geometric mean) factor 0.947149 per increase of 10 agents.   

In summary, given that the error found for N = 200 is 0.002288, based on this ex-

trapolation method the difference between the agent-based and population-based 

model for larger population sizes N  200 can be estimated as 

est_error(N)  = 0.002145 + (0.002288-0.002145)*0.947149
N-200

 

= 0.002145 + 0.000143*0.947149
N-200 

     (26) 

 

a)

b) 

Fig. 9. a) Difference between agent-based and population-based trust models upon change in 

population size on level flexibility parameter γP = 0.5 (number of agents vs. average εavg), b) 

Graph of ln(error – e) compared to a straight line for e = 0.002145 (number of agents vs. ε) 

This estimation predicts that always an error of at least 0.002145 is to be expected; 

this actually is quite low, but it will not become still lower in the limit for very large 

N. It turns out that the difference between actual error and estimated error using the 

above formula in equation 26, for all N between 200 and 500 is less than 2.10
-6

, with 

an average of 7.10
-7

. Note that by having this estimation of the error, it can also be 

0.00210

0.00212

0.00214

0.00216

0.00218

0.00220

0.00222

0.00224

0.00226

0.00228

0.00230



used to correct the population-based model for it, thus in a cheap manner approximat-

ing the agent-based model by an accuracy around 10
-6

. 

3.4.2.4 Computational time complexity of experiments 

The computation complexities of the experiments described above are primarily based 

on the complexity estimations presented in Section 3.4. It was clear that the nature of 

these experiments was exhaustive, hence to conduct them on a desktop PC would 

require a large amount of time. So these experiments were conducted on the Distrib-

uted ASCI Supercomputer version 4, DAS-4 [3]. The computation complexity of 

these experiments is shown in Fig.10. In this figure the horizontal axis represents the 

different experiments described in the previous sections and the vertical axis shows 

the number of days required to complete these experiments on a PC and on DAS-4. 

Here it should be noted that for experiment 1 and 3, 25 nodes of DAS-4 are used 

while for experiment 2, 100 nodes of DAS-4 were utilized. As it can be seen from 

Figure 5 all three experiments were expected to take approximately 55 days on a sin-

gle machine while usage of DAS-4 has reduced this time to approximately 1.25 days. 

 

 

Fig. 10. Total computation time required for the simulation experiments incorporating direct 

and indirect experiences on PC and DAS-4 

4 Mathematical Analysis 

In this section for a number of cases a mathematical analysis is described of how the 

agent-based and population-based models compare. This analysis is performed in two 

Sections 4.1 and 4.2 for the trust models incorporating direct experiences and incor-

porating indirect experiences respectively. 

4.1 Trust models incorporating direct experience 

A first step is the simple uniform case that all agents have the same flexibility pa-

rameter γA = . Then by summation of the equation (1) 

Exp-01 Exp-02 Exp-03

PC 0.312256944 31.49945602 23.12265046

DAS-4 0.012490278 0.316296296 0.924906019
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over all agents (a number N) the following is obtained 
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This shows that the notion of collective trust TC(t) obtained by aggregating the indi-

vidual trust level in the agent-based model exactly satisfies the equation for the popu-

lation-based model for TP(t). So, in this uniform case the population-based model 

provides exactly the same outcome as the aggregation of the values from the agent-

based models.  

As shown by the simulations, this perfect match is not the case when the agents 

have different flexibility characteristics. As an example, suppose the γA have devia-

tions A (which are assumed to be at most some , and have an average 
 

 
 A   = 0) 

from the aggregated value γ. Then the above calculations can be done in an approxi-

mate manner: 
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This introduces an error term per time step. As 
 

 
 A   = 0, the error term can be re-

written as follows: 
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This shows that in particular when the agent-based trust values all converge to a cer-

tain limit in response to a certain pattern of experiences, the additional error per time 

step will become very low. 

A limit value for TA(t) (or TP(t)) can be found by an equilibrium analysis: by de-

termining values for which no change occurs. For this case, strictly spoken this means 



that E is constant, and 
  

  
 = 0, so TA = E. If E is not constant, but has stochastic fluc-

tuations according to some probability density function pd(E) (for example based on a 

mean value and standard deviation as in Section 3), then still a form of pseudo-

equilibrium value for TA(t) can be determined if instead of E an expectation value 

Exp(E) for E is taken. Then a (pseudo-)equilibrium value is TA = Exp(E), where   

 Exp(E) =            
 

 
  (27) 

with pd(E) the probability density function for E. 

4.2 Mathematical Analysis of Equilibria of the Two Models incorporating 

agent communication 

The agent-based and population-based models can also be analysed mathematically 

by determining equilibria. These are values for the variables upon which no change 

occurs anymore. For equilibria also the externally given experience values have to be 

constant; instead of these values for E also the expectation value for them can be 

taken. For the population-level model, assuming flexibility γP > 0 an equilibrium has 

to satisfy TP(t) = EP(t) with 

                        
     (28) 

Leaving out t, and taking E =   
 , this provides the following equation in TP 

 TP =  P TP + (1- P)E (29) 

Thus (assuming  P  1) an equilibrium TP = E is obtained. In a similar manner for the 

agent-based model equilibria can be determined. Again, assuming flexibility γA > 0 an 

equilibrium has to satisfy TA(t) = EA(t) for each agent A, this time with 

            
             

     (30) 

where   
      BA TB(t)/(N-1). This provides N equations 

 TA(t) =  A BA TB(t)/(N-1) + (1- A)E (31) 

By aggregating possible equations from equation 31, and leaving out t, the relation to 

collective trust can be found: 

A TA/N = A [ A BA TB/(N-1) + (1- A)E ]/N 

     TC = A  A BA TB/(N-1)N + A (1- A)E /N 

= A  A [B TB – TA]/(N-1)N + (1-A  A/N) E  

=[ A  A B TB – A  A TA]/(N-1)N + (1-A  A/N) E  

=[ A  A TC /(N-1) – A  A TA /(N-1)N] + (1-A  A/N) E  

=[(A  A /N) TC N /(N-1) – A  A TA /(N-1)N] + (1-A  A/N) E TC  

=[(A  A /N) TC + (A  A /N) TC/(N-1)  – A ATA /(N-1)N] + (1-A  A/N) E  

= (A  A /N) TC + (1-A  A/N) E + [(A A/N) TC/(N-1) – A  A TA /(N-1)N]  

= (A  A /N) TC + (1-A  A/N) E + [(A  ATC – A  A TA] /(N-1)N 



= (A  A /N) TC + (1-A  A/N) E +  A  A[TC –TA] /(N-1)N 

 

So, taking  C  = A  A /N  the following equilibrium equation is obtained: 

 (1- C) TC =(1- C)  E +A  A[TC –TA] /(N-1)N 

 TC =  E + A  A[TC –TA] /(N-1)N(1- C) 

Therefore in general the difference between the equilibrium values for TC (aggregated 

agent-based model) and TP (population-based model) can be estimated as  

 TC – TP =  TC – E  =  A  A[TC –TA] /(N-1)N(1- C) 

As TC and TA are both between 0 and 1, the absolute value of the expression in TC –TA 

can be bounded as follows  

 |A  A[TC –TA] /(N-1)N(1- C)|  A  A /(N-1)N(1- C)| =  C/(N-1)(1- C) 

Therefore the following bound for the difference in equilibrium values is found: 

 |TC – TP|     C /(N-1)(1- C) 

This goes to 0 for large N, which would provide the value TC = E = TP. For  C = 0.5, 

and N = 200, this bound is about 0.005, for N = 500, it is about 0.002. These devia-

tions are in the same order of magnitude as the ones found in the simulations. Note 

that the expression in TC – TA also depends on the variation in the population. When 

all agents have equal characteristics  A =   it is 0, so that TC = E = TP. 

 TC – TP =   A [TC –TA] /(N-1)N(1- C) =   [ A TC / N – A TA/ N] /(N-1) (1- C) 

=   [TC – TC] /(N-1)(1- C) = 0 

 

So also in the case of equal parameter values for  A it holds TC = E = TP; note that 

this is independent of the variation for the other parameters. 

5 Conclusion 

This paper addressed an exploration of the differences between agent-based and popu-

lation-based models for trust dynamics, based on both a large variety of simulation 

experiments and a mathematical analysis of the equilibria of the two types of models.  

Trust at an individual agent level considers an agent having trust in a certain trus-

tee. At an agent population level, collective trust considers how much trust for a cer-

tain trustee exists in a given population of agents. The dynamics of trust states over 

time can be modelled per individual in an agent-based manner. These individual trust 

states can be aggregated to obtain a collective trust state TC(t) of the population, for 

example by taking their average. Trust dynamics can be modelled from a population 

perspective as well, by an equation for a population trust value TP(t); this is much 



more efficient computationally. However, at forehand it is not clear in how far this 

TP(t) will provide similar results as TC(t).  

In this paper an analysis was reported for both ways of modelling of how close 

TC(t) and TP(t) approximate each other. For trust models incorporating direct experi-

ences only, as an overall result, it was shown that the approximation can be reasona-

bly accurate, and for not too small numbers of agents even quite accurate, with differ-

ences of less than 0.02 for trust values in the interval [0, 1]. 

For the trust models incorporating direct and indirect experiences, it was shown 

that the differences between the two types of model are quite small, in general below 

1%, and become less for larger numbers of agents. An implication of this is that when 

for a certain application such an accuracy is acceptable, instead of the computation-

ally more expensive agent-based modelling approach (complexity O(N
2
τ) with N the 

number of agents and τ the number of time steps), as an approximation also the popu-

lation-based approach can be used (complexity O(τ)). 

The experiments to find these results were conducted on the Distributed ASCI Su-

percomputer version 4, DAS-4 [3], thereby using 25, resp. 100 processors. The ex-

periments were expected to take approximately 55 days on a single PC; the use of 

DAS-4 has reduced this time to approximately 1.26 days. In future work more com-

plex trust models can be considered, for example, involving competition or coopera-

tion between multiple trustees, agent’s feeling and biases towards trustee. 

Note that modelling trust dynamics in a population-based manner for a population 

as a whole does not provide ways to derive trust for any partiular individual agent. 

Only if such an agent is a very average type of agent, its trust may be close to the 

population’s trust level. In cases that specific subpopulations exist for which trust 

develops in essentially different ways (for example in opposite ways), all individual 

trust levels may substantially deviate from the population’s trust level. If such sub-

populations can be identified, a more refined population-based approach is possible, 

where each of the subpopulations is modelled in an independent population-based 

manner. In this way population-based modelling can be applied across multiple ab-

straction levels. 
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