
Validation and Verification of Agent Models for
Trust: Independent compared to Relative Trust

Mark Hoogendoorn∗, Syed Waqar Jaffry∗ and Peter-Paul van Maanen∗†

∗ Department of Artificial Intelligence, Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Email: {mhoogen, swjaffry}@cs.vu.nl
† Department of Cognitive Systems Engineering, TNO Human Factors

P.O. Box 23, 3769 ZG Soesterberg, The Netherlands
Email: peter-paul.vanmaanen@tno.nl

Abstract—In this paper, the results of a validation
experiment for two existing computational trust models
describing human trust are reported. One model uses
experiences of performance in order to estimate the trust
in different trustees. The second model carries the notion
of relative trust. The idea of relative trust is that trust
in a certain trustee not solely depends on the experiences
with that trustee, but also on trustees that are considered
competitors of that trustee. In order to validate the models,
parameter adaptation has been used to tailor the models
towards human behavior. A comparison between the two
models has also been made to see whether the notion of
relative trust describes human trust behavior in a more
accurate way. The results show that taking trust relativity
into account indeed leads to a higher accuracy of the trust
model. Finally, a number of assumptions underlying the
two models are verified using an automated verification
tool.

Index Terms—Trust, Multi-Agent Systems, Parameter
Adaptation, Validation, Verification.

1 INTRODUCTION

When considering relations and interaction be-
tween agents, the concept of trust is of utmost
importance. Within the domain of multi-agent sys-
tems, the concept of trust has been a topic of
research for many years (e.g., Sabater and Sierra,
2005; Ramchurn et al., 2004). Within this research,
the development of models expressing how agents
form trust based upon direct experiences with a
trustee or information obtained from parties other
than the trustee is one of the central themes. Some
of these models aim at creating trust models that
can be utilized effectively within a software agent

environment (e.g., Maanen et al., 2007), whereas
other models aim to present an accurate model of
human trust (see e.g., Jonker and Treur, 1998; Fal-
cone and Castelfranchi, 2004; Hoogendoorn et al.,
2008). The latter type of model can be very useful
when developing a personal assistant agent for a
human with the awareness of the human’s trust
in different other agents (human or computer) and
him- or herself (trustees). This could for example
avoid advising to use particular information sources
that are not trusted by the human or could be used
to enhance the trust relationship with the personal
assistant agent itself.

In order for computational trust models to be
usable in real life settings, the validity of these
models should be proven first. However, relatively
few experiments have been performed that validate
the accuracy of computational trust models upon
empirical data. For instance, in (Jonker et al., 2004)
an experiment has been conducted whereby the
trends in human trust behavior have been ana-
lyzed to verify properties underlying trust models
developed in the domain of multi-agent systems.
However, no attempt was made to fit the model to
the trusting behavior of the human.

In this paper, the results of a validation experi-
ment for two computational trust models describing
human trust are reported. An in previously studies
utilized trust model (Maanen et al., 2007), which
was inspired on the trust model described in (Jonker
and Treur, 1998), has been taken as a baseline
model. This model uses experiences of performance



in order to estimate the trust in different trustees.
The second model which is validated in this study
is a model which also carries the notion of relative
trust (Hoogendoorn et al., 2008). The idea of relative
trust is that trust in a certain trustee not solely
depends on the experiences with that trustee, but
also with trustees that are considered competitors of
that trustee. A comparison between the two models
has is also made to see whether the notion of
relative trust describes human trust behavior in a
more accurate way.

The validation process includes a number of
steps. First, an experiment with participants has
been performed in which trust plays an important
role. As a result, empirical data has been obtained,
that is usable for validating the two models. One
part of the dataset is used to learn the best param-
eters for the two different trust models. Then these
parameters are used to estimate human trust, using
the same input as was used to generate the other
part of the dataset. Finally, a number of assumptions
underlying the two trust models are verified upon
the obtained dataset using an automated verification
tool.

This paper is organized as follows. First, the two
trust models that have been used in this study are
explained in Section 2. The experimental method
is explained in Section 3. Thereafter, the results
of the experiment in terms of model validation
and verification are described in Section 4. Finally,
Section 5 is a discussion.

2 AGENT MODELS FOR TRUST

In this section the two types of trust models
which are subject of validation are described. In
Section 2.1 a model that describes human trust
in one agent that is independent of trust in other
agents, whereas the model described in Section 2.2
is dependent of trust in other agents.

2.1 Independent Trust Model

As has been mentioned above, this model is
independent of trust in other agents (Maanen et al.,
2007; Jonker and Treur, 1998). Trust is calculated
by means of the following formula:

τa
indep(t) = τa

indep(t−1)·λa
indep+(1−pa(t))·(1−λa

indep)

where λa
indep is the independent model decay factor

for trustee agent a ∈ A, with 0 ≤ λa
indep ≤ 1,

and pa(t) is the penalty of trustee agent a at
time point t ∈ N, with 0 ≤ pa(t) ≤ 1, and
τa

indep(t) is the independent trust in agent a at
time point t. The penalty is calculated by means
of the current feedback on the performance of the
trustee agent. If pa(t) = 0, then the performance is
good, whereas a performance of pa(t) = 1 is very
bad. The independent trust is calculated for each
trustee agent. Eventual reliance decisions are made
by determining the maximum of the independent
trust over all trustee agents a ∈ A.

2.2 Relative Trust Model
This section describes the relative trust

model (Hoogendoorn et al., 2009b). In this
model trustees are considered competitors, and the
human trust in a trustee depends on the relative
experiences with the trustee to the experiences from
the other trustees. The model defines the total trust
of the human as the difference between positive
trust and negative trust (distrust) on the trustee. It
includes several human personality characteristics
including trust decay, flexibility, and degree of
autonomy (context-independence) of the trust.

In the relative trust model it is assumed that a
set of trustees {S1, S2, . . . , Sn} is available that can
be selected to give particular advice at each time
step. Upon selection of one of the trustees (Si), an
experience is passed back indicating how well the
trustee performed. This experience (Ei(t)) is a num-
ber on the interval [−1, 1]. Hereby, −1 expresses
a negative experience, 0 is a neutral experience,
and 1 a positive experience. In the trust model,
the assumption is made that the trustee currently
with the highest trust value is always selected for
an experience.

As mentioned, the relative trust model includes
several parameters representing human character-
istics including trust flexibility β (measuring the
change in trust on each new experience), decay γ
(decay in trust when there is no experience) and
autonomy η (dependence of the trust calculation
considering other options). The model parameters
β, γ and η have values from the interval [0, 1].

As mentioned before, the model is composed
from two models: one for positive trust, accumulat-



ing positive experiences, and one for negative trust,
accumulating negative experiences. Both negative
and positive trust are represented by a number
between [0, 1]. The human’s total trust Ti(t) in Si

is the difference in positive and negative trust of
Si at time point t, which is a number between
[−1, 1], where −1 and 1 represent the minimum and
maximum values of trust, respectively. In particular,
also the human’s initial total trust of Si at time
point 0 is Ti(0), which is the difference in initial
trust T+

i (0) and distrust T−i (0) in Si at time point 0.
As a differential equation the change in positive

and negative trust over time is described in the
following manner (Hoogendoorn et al., 2009b):

dT+
i (t)

dt
= Ei(t) ·

(Ei(t) + 1)

2
· β·(

η · (1− T+
i (t)) + (1− η)·

(τ+
i (t)− 1) · T+

i (t) · (1− T+
i (t))

)
−

γ · T+
i (t) · (1 + Ei(t)) · (1− Ei(t))

dT−i (t)

dt
= Ei(t) ·

(Ei(t)− 1)

2
· β·(

η · (1− T−i (t)) + (1− η)·

(τ−i (t)− 1) · T−i (t) · (1− T−i (t))
)
−

γ · T−i (t) · (1 + Ei(t)) · (1− Ei(t))

In the above equations, Ei(t) is the experience
value given by Si at time point t. Also τ+

i (t) and
τ−i (t) are the human’s relative positive and negative
trust in Si at time point t, which is the ratio of
the human’s positive or negative trust in Si to the
average human’s positive or negative trust in all
trustees at time point t defined as follows:

τ+
i (t) =

T+
i (t)(∑n

j=1 T+
j (t)

n

)
and

τ−i (t) =
T−i (t)(∑n
j=1 T−j (t)

n

)

3 METHOD

In this section the experimental methodology is
explained. In Section 3.1 the participants are de-
scribed. In Section 3.2 an overview of the used
experimental environment is given. Thereafter, the
procedure of the experiment is explained in four
stages: In Sections 3.3, 3.4, 3.5 and 3.6, the pro-
cedures of data collection, parameter adaptation,
model validation and model verification are ex-
plained, respectively. The results of the experiment
are given in Section 4.

3.1 Participants

18 Participants (eight male and ten female) with
an average age of 23 (SD = 3.8) participated in
the experiment as paid volunteers. Participants were
selected between the age of 20 and 30 and were not
color blinded. All were experienced computer users,
with an average of 16.2 hours of computer usage
each week (SD = 9.32).

3.2 Task

The experimental task was a classification task
in which two participants on two separate per-
sonal computers had to classify geographical areas
according to specific criteria as areas that either
needed to be attacked, helped or left alone by
ground troops. The participants needed to base
their classification on real-time computer generated
video images that resembled video footage of real
unmanned aerial vehicles (UAVs). On the camera
images, multiple objects were shown. There were
four kinds of objects: civilians, rebels, tanks, and
cars. The identification of the number of each
of these object types was needed to perform the
classification. Each object type had a score (either
−2, −1, 0, 1 or 2, respectively) and the total
score within an area had be determined. Based on
this total score the participants could classify a
geographical area (i.e., attack when above 2, help
when below −2 or do nothing when in between).
Participants had to classify two areas at the same
time and in total 98 areas had to be classified. Both
participants did the same areas with the same UAV
video footage.

During the time a UAV flew over an area, three
phases occurred: The first phase was the advice



Figure 1. Interface of the task.

phase. In this phase both participants and a sup-
porting software agent gave an advice about the
proper classification (attack, help, or do nothing).
This means that there were three advices at the
end of this phase. It was also possible for the
participants to refrain from giving an advice, but
this almost did not happen. The second phase was
the reliance phase. In this phase the advices of both
the participants and that of the supporting software
agent were communicated to each participant. Based
on these advices the participants had to indicate
which advice, and therefore which of the three
trustees (self, other or software agent), they trusted
the most. Participants were instructed to maximize
the number of correct classifications at both phases
(i.e., advice and reliance phase). The third phase was
the feedback phase, in which the correct answer was
given to both participants. Based on this feedback
the participants could update their internal trust
models for each trustee (self, other, software agent).

In Figure 1 the interface of the task is shown. The
map is divided in 10×10 areas. These boxes are the
areas that were classified. The first UAV starts in the
top left corner and the second one left in the middle.
The UAVs fly a predefined route so participants do
not have to pay attention to navigation. The camera
footage of the upper UAV is positioned top right
and the other one bottom right.

Each experiment contained an easy as well as
a difficult part. Difficulty was manipulated by the
amount of objects visible on the screen. The advice

of the self, other and the software agent was com-
municated via dedicated boxes below the camera
images. The advice to attack, help, or do noth-
ing was communicated by red, green, and yellow,
respectively. On the overview screen on the left,
feedback was communicated by the appearance of
a green tick or a red cross. The reliance decision of
the participant is also shown on the overview screen
behind the feedback (feedback only shown in the
feedback phase). The phase depicted in Figure 1 was
the reliance phase before the participant indicated
his reliance decision.

3.3 Data Collection

During the above described experiment, input
and output were logged using a server-client ap-
plication. The interface of this application is shown
in Figure 2. Two other client machines, that were
responsible for executing the task as described in the
previous subsection, were able to connect via a local
area network to the server, which was responsible
for logging all data and communication between the
clients. The interface shown in Figure 2 could be
used to set the client’s IP-addresses and ports, as
well as several experimental settings, such as how
to log the data.

Experienced performance feedback of each
trustee and reliance decisions of each participant
were logged in temporal order for later analysis.
During the feedback phase the given feedback was
translated to a penalty of either 0, .5 or 1, rep-
resenting a good, neutral or poor experience of
performance, respectively. This directly maps to the
value of pa(t) in the independent trust model. For
the relative trust model however, a translation has
been made to Ei(t) whereby the value 0 has been
mapped to Ei(t) = −1, .5 to Ei(t) = 0 and 1 to
Ei(t) = 1. During the reliance phase the reliance
decisions were translated to either 0 or 1 for each
trustee S, which represented that one relied or did
not rely on S.

3.4 Parameter Adaptation

The data collection described in Section 3.3 was
repeated on each group of two participants twice,
called condition 1 and condition 2, respectively.
The data from one of the conditions was used



Figure 2. Interface of the application used for gathering validation
data (Connect), for parameter adaptation (Tune) and validation of the
trust models (Validate).

for parameter adaptation purposes for both mod-
els, and the data from the other condition for
model validation (see Section 3.5). This process of
parameter adaptation and validation was balanced
over conditions, which means that condition 1 and
condition 2 switch roles (i.e., parameter adaptation
and model validation) for half of the validation
efforts (i.e., cross-validation). Both the parameter
adaptation and model validation procedure was done
using the same application as was used for gathering
the empirical data. The interface shown in Figure 2
could also be used to alter validation and adaptation
settings, such as the granularity of the adaptation.

The number of parameters of the models pre-
sented in Section 2 to be adapted suggest that
an exhaustive search for the optimal parameters is
feasible (Hoogendoorn et al., 2009b). This means
that the entire parameter search space is explored
to find a vector of parameter settings resulting in
the maximum accuracy (i.e., the amount of overlap
between the model’s predicted reliance decisions
and the actual human reliance decisions) for each

of the models. The corresponding code of the for
this purpose implemented exhaustive search method
is shown in Algorithm 1.

Algorithm 1 ES-PARAMETER-ADAPTATION(E,
RH)

1: θbest ← 0
2: for all parameter setting vectors X do
3: θX ← 0
4: for all time points t do
5: e← E(t)
6: rM ← RM(e, X)
7: rH ← RH(e)
8: if rM = rH then
9: θX ← θX + 1

10: end if
11: end for
12: if θX > θbest then
13: Xbest ← X
14: θbest ← θX

15: end if
16: end for
17: return Xbest

In this algorithm, E(t) is the experience (i.e.,
performance feedback) at time point t, RH(e) is the
actual reliance decision the participant made given a
certain experience e, θX is the accuracy of a certain
candidate parameter setting vector X , RM(e,X) is
the predicted reliance decision of the trust model M
(either independent or relative), given an experience
e and candidate parameter setting vector X , θbest is
the accuracy of the best parameter setting vector
Xbest found so far, and is returned when the algo-
rithm finishes. This parameter adaptation procedure
was implemented in C#. Part of the C#-code is listed
in the appendix of this paper, where the method
“UpdateDistance()” corresponds to lines 5 until 10
in Algorithm 1 and RM(e, X) is calculated by the
method “TrusteeWithMaxTrust()”.

Here, if µ number of parameters with precision τ
are to be estimated, N is the number of trustees, and
B the number of reliance decisions (i.e., time points)
made by human, then the worst case complexity of
the method can be expressed as O((10)µτNB2). In
particular when µ = 3 (i.e., the three parameters β,
γ and η for the relative trust model) and also τ = 2
(or precision .01), N = 3 and B = 100 then 3 ·1010



steps are needed. For the independent trust model
with only one parameter 3·107 steps are needed. The
execution of an iteration took on average 3 minutes
and 20 seconds.1

3.5 Validation
In order to validate the two models described

in Section 2, the measurements of experienced
performance feedback were used as input for the
models and the output (predicted reliance decisions)
of the models was compared with the the actual
reliance decisions of the participant. The overlap
of the predicted and the actual reliance decisions
was a measure for the accuracy of the models.
The results are in the form of dynamic accuracies
over time, average accuracy per condition (1 or 2)
and per trust model (independent or relative). A
comparison between the averages per model and the
interaction effect between condition role allocation
(i.e., parameter adaptation either in condition 1 or 2)
and model type, is done using a repeated measures
analysis of variance (ANOVA).

3.6 Verification
Next to a validation using the accuracy of the pre-

diction using the models, another approach has been
used to validate the assumptions underlying existing
trust models. The idea is that properties that form
the basis of trust models are verified against the
empirical results obtained within the experiment. In
order to conduct such an automated verification, the
properties have been specified in a language called
Temporal Trace Language (TTL) (Bosse et al.,
2009) that features a dedicated editor and an auto-
mated checker. The language TTL is explained first,
followed by an expression of the desired properties
related to trust.

Temporal Trace Language (TTL): The predicate
logical temporal language TTL supports formal
specification and analysis of dynamic properties,
covering both qualitative and quantitative aspects.
TTL is built on atoms referring to states of the
world, time points and traces, i.e., trajectories of
states over time. In addition, dynamic properties
are temporal statements that can be formulated with
respect to traces based on the state ontology Ont in

1This was on an ordinary PC with an In-
tel(R) Core(TM)2 Quad CPU @2.40 GHz inside.

the following manner. Given a trace γ over state
ontology Ont, the state in γ at time point t is
denoted by state(γ, t). These states can be related to
state properties via the formally defined satisfaction
relation denoted by the infix predicate |=, i.e.,
state(γ, t) |= p denotes that state property p holds
in trace γ at time t. Based on these statements,
dynamic properties can be formulated in a formal
manner in a sorted first-order predicate logic, using
quantifiers over time and traces and the usual first-
order logical connectives such as ¬, ∧, ∨, ⇒, ∀,
and ∃. For more details on TTL, see (Bosse et al.,
2009)

Properties for Trust Models: Within the liter-
ature on trust, a variety of properties have been
expressed concerning the desired behavior of trust
models. In many of these properties, the trust values
are explicitly referred to, for instance in the work
of (Jonker and Treur, 1998) characteristics of trust
models have been defined (e.g., monotonicity, and
positive trust extension upon positive experiences).
In this paper however, the trust function is subject of
validation and therefore cannot be taken as a basis.
Therefore, properties are expressed on an external
basis, solely using the information which has been
observed within the experiment to see whether these
behaviors indeed comply to the desired behavior of
the trust models. This information is then limited
to the experiences that are received as an input and
the choices that are made by the human that are
generated as output. The properties from (Hoogen-
doorn et al., 2009a) are taken as a basis for these
properties. Essentially, the properties indicate the
following desired behavior of human trust:

1) Positive experiences lead to higher trust
2) Negative experiences lead to lower trust
3) Most trusted trustee is selected
As can be seen, the properties also use the inter-

mediate state of trust. In order to avoid this, it is
however possible to combine these properties into a
single property that expresses a relation between the
experiences and the selection (i.e., the above items 1
+ 3 and 2 + 3). Two of these properties are shown
below. In addition, a property is expressed which
specifies the notion of relativity in the experiences
and the resulting selection of a trustee. The first
property expresses that a trustee that gives the
absolute best experiences during a certain period is



eventually selected at least once within, or just after
that particular period, and is shown below.

P1(min duration, max duration, max time):
Absolute more positive experiences results in
selection
If a trustee a1 always gives more positive experi-
ences than all other trustees during a certain period
with minimal duration min duration and maximum
duration max duration, then this trustee a1 is se-
lected at least once during the period [min duration,
max duration + max time].

Formal:

P1(min duration:DURATION, max duration:DURATION,
max delay:DURATION) ≡
∀γ:TRACE, tstart, tend:TIME, a:TRUSTEE
[ [ tend−tstart≥ min duration & tend−tstart ≤ max duration
& absolute highest experiences(γ, a, tstart, tend)
⇒ selected(γ, a, tstart, tend, max delay)

where

absolute highest experiences(γ:TRACE, a:TRUSTEE,
tstart:TIME, tend:TIME) ≡
∀t:TIME, r1, r2:REAL, a2:TRUSTEE 6=a

[ [ t≥ tstart & t < tend &
state(γ, t) |= trustee gives experience(a, r1) &
state(γ, t) |= trustee gives experience(a2, r2) ]
⇒ r2 < r1]

selected(γ:TRACE, a:TRUSTEE, tstart:TIME, tend:TIME,
z:DURATION) ≡
∃t:TIME [ t≥ tstart & t < tend + z &
state(γ, t) |= trustee selected(a) ]

The second property, P2, specifies that the trustee
which gives more positive experiences on average
during a certain period is at least selected once
within or just after that period.

P2(min duration, max duration, max time,
higher exp): Average more positive experiences
results in selection
If a trustee a1 on average gives the most positive
experiences (on average more than higher exp
better than the second best) during a period with
minimal duration min duration and maximum
duration max duration, then this trustee a1

is selected at least once during the period
[min duration, max duration+max time].

Formal:

P2(min duration:DURATION, max duration:DURATION,
max delay:DURATION, higher exp:REAL) ≡
∀γ:TRACE, tstart, tend:TIME, a:TRUSTEE
[ [ tend−tstart≥ min duration & tend−tstart ≤ max duration
& average highest experiences(γ, a, tstart, tend, higher exp)]
⇒ selected(γ, a, tstart, tend, max delay) ]

where

average highest experiences(γ:TRACE, a:TRUSTEE,
tstart:TIME, tend:TIME, higher exp:REAL) ≡
∀t:TIME, r1, r2:REAL, a2:TRUSTEE 6= a
[ t ≥ tstart & t < tend &
[

∑
∀t:TIME case(experience received(γ, a, t,

tstart, tend, e), e, 0) >

(
∑

∀t:TIME (case(experience received(γ, a, t,
tstart, tend, e), e, 0)) + higher exp * tend − tstart) ] ]

In the formula above, the case(p, e, 0) operator
evaluates to e in case property p is satisfied and to
0 otherwise.

experience received(γ:TRACE, a:TRUSTEE, t:TIME,
tstart:TIME, tend:TIME, r:REAL) ≡
[ ∃r:REAL, t≥tstart & t < tend &
state(γ, t) |= trustee gives experience(a, r) ]

The final property concerns the notion of relativ-
ity which plays a key role in the models verified
throughout this paper. The property expresses that
the frequency of selection of a trustee that gives an
identical experience pattern during two periods is
not identical in case the other trustees give different
experiences.

P3(interval length, min difference, max time):
Relative trust
If a trustee a1 gives an identical experience pattern
during two periods [t1, t1+ interval length] and [t2,
t2+ interval length] and the experiences of at least
one other trustee is not identical (i.e., more than
min difference different at each time point), then
the selection frequency of a1 will be different in a
period during, or just after the specified interval.

Formal:



P3(interval length:DURATION, min difference:REAL,
max time:DURATION) ≡
∀γ:TRACE, t1, t2:TIME, a:TRUSTEE
[ [ same experience sequence(γ, a, t1, t2, interval length) &
∃a2:TRUSTEE 6=a

[different experience sequence(γ, a, t1, t2, min difference)]
⇒ ∃i:DURATION < max time∑

∀t:TIME case(selected option(γ, a, t, t1 + i,
t1 + i+ interval length), 1, 0) /
(1 +

∑
∀t:TIME case(trustee selected(γ, t, t1,

t1 + i+ interval length), 1, 0) ) 6=∑
∀t:TIME case(selected option(γ, a, t, t2 + i,

t2 + i+ interval length), 1, 0) /
(1 +

∑
∀t:TIME case(trustee selected(γ, t,

t2 + i, t2 + i+ interval length), 1, 0) )

where

same experience sequence(γ:TRACE, a:TRUSTEE,
t1:TIME, t2:TIME, x:DURATION) ≡
∀y:DURATION [ y ≥ 0 & y ≤ x & ∃r:REAL
[ state(γ, t1 + y) |= trustee gives experience(a, r) &
state(γ, t2 + y) |= trustee gives experience(a, r) ] ]

different experience sequence(γ:TRACE, a:TRUSTEE,
t1:TIME, t2:TIME, x:DURATION, min difference:REAL) ≡
∀y:DURATION [ y ≥ 0 & y ≤ x & ∃r1, r2:REAL
[ state(γ, t1 + y) |= trustee gives experience(a, r1) &
state(γ, t2 + y) |= trustee gives experience(a, r2) &
|r1 − r2| > min difference ] ]

trustee selected(γ:TRACE, t:TIME, tstart:TIME, tend:TIME)
≡ ∃a:TRUSTEE
[ t ≥ tstart & t < tend & state(γ, t) |= trustee selected(a) ]

4 RESULTS

In this section the results of the model validation
and verification are given in Sections 4.1 and 4.2,
respectively.

4.1 Validation Results
From the data of 18 participants, one dataset has

been removed due to an error while gathering data.
This means that there are 2 (condition role alloca-
tions, i.e., parameter adaptation either in condition 1
or 2) times 17 (participants) = 34 data pairs (accura-
cies for 2 models). Due to a significant Grubbs test,
from these pairs 3 outliers were removed. Hence in
total 31 pairs were used for the data analysis.

In Figure 3 the main effect of model type (either
independent or relative trust) for accuracy is shown.

 Adaptation in 1
 Adaptation in 2Independent Relative

Model type

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

Figure 4. Interaction effect between condition role allocation and
model type on accuracy.

A repeated measures analysis of variance (ANOVA)
showed a significant main effect (F (1, 29) = 7.60,
p < .01). This means that indeed the relative
trust model had a higher accuracy (M = .7968,
SD = .0819) than the independent trust model
(M = .7185, SD = .1642).

Figure 4 shows the possible interaction effect
between condition role allocation (parameter adap-
tation in condition 1 or in condition 2) and model
type (either independent or relative trust) on ac-
curacy. No significant interaction effect was found
(F (1, 29) = .01, p = .93). Hence no signifi-
cant learning effect between conditions was found.
Cross-validation was not needed to balance the data,
but the procedure still produced twice as much data
pairs.

4.2 Verification Results

The results of the verification of the properties
against the empirical traces (i.e., formalized logs of
human behavior observed during the experiment)
are shown in Table 1. First, the results for prop-
erties P1 and P2 are shown. Hereby, the value of
max duration has been kept constant at 30 and
the max time after which the trustee should be
consulted is set to 5. The minimal interval time
(min duration) has been varied. Finally, for property
P2 the variable higher exp indicating how much
higher the experience should be on average com-
pared to the other trustees is set to .5.



Independent Relative

Model type

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Figure 3. Main effect of model type for accuracy.

TABLE 1
RESULTS OF VERIFICATION OF PROPERTY P1 AND P2.

min duration % satisfying P1 % satisfying P2

1 64.7 29.4
2 64.7 29.4
3 86.7 52.9
4 92.3 55.9
5 100.0 58.8
6 100.0 70.6

The results in Table 1 indicate the percentage of
traces in which the property holds out of all traces
in which the antecedent at least holds once (i.e.,
at least one sequence with the min duration occurs
in the trace). This has been done to avoid a high
percentage of satisfaction due to the fact that in
some of the traces the antecedent never holds, and
hence, the property is always satisfied. The table
shows that the percentage of traces satisfying P1
goes up as the minimum duration of the interval
during which a trustee gives the highest experience
increases. This clearly complies to the ideas un-
derlying trust models as the longer a trustee gives
the highest experiences, the higher his trust will be
(also compared to the other trustees), and the more
likely it is that the trustee will be selected. The

second property, counting the average experience
and its implication upon the selection behavior
of the human, also shows an increasing trend in
satisfaction of the property with the duration of
the interval during which the trustee on average
gives better experiences. The percentages are lower
compared to P1 which can be explained by the fact
that they might also give some negative experiences
compared to the alternatives (whereas they are giv-
ing better experiences on average). This could then
result in a decrease in the trust value, and hence, a
lower probability of being selected.

The third property, regarding the relativity of
trust has also been verified and the results of this
verification are shown in Table 2. Here, the traces
of the participants have been verified with a setting
of min difference to .5 and max time to 5 and the
variable interval length during which at least one
trustee shows identical experiences whereas another
shows different experiences has been varied.

It can be seen that property P3 holds more
frequently as the length of the interval increases,
which makes sense as the human has more time
to perceive the relative difference between the two.
Hence, this shows that the notion of relative trust
can be seen in the human trustee selection behavior



TABLE 2
RESULTS OF VERIFICATION OF PROPERTY P3.

interval length % satisfying P3

1 0
2 41.1
3 55.9
4 67.6
5 66.7
6 68.4

in almost 70% of the cases.

5 DISCUSSION AND CONCLUSIONS

In this paper, an extensive validation study has
been performed to show that human trust behavior
can be accurately described and predicted using
computational trust models. In order to do so, an
experiment has been designed that places humans
in a setting whereby they have to make decisions
based upon the trust they have in others. In total 18
participants took part in the experiment. The results
show that both an independent (see Maanen et al.,
2007; Jonker and Treur, 1998) as well as a relative
trust model (see Hoogendoorn et al., 2008) can
predict this behavior with a high accuracy (72%
and 80%, respectively) by learning on one dataset
and predicting the trust behavior. Furthermore, it
has been shown that the underlying assumptions of
the trust models (and many other trust models) also
show in the data of the participants.

Of course, more work on the validation of trust
models has been performed. In (Jonker et al., 2004)
an experiment has been presented in which human
experiments in trust have been described. Although
the underlying assumptions of trust models have
to some extent been verified in that paper, no
attempt has been made to fit a trust model to the
data. Other papers describing the validation of trust
models for instance validate the accuracy of trust
models describing the propagation of trust through
a network (e.g., Guha et al., 2004).

In the future research the considered parameter
adaptation methods will be extended for the case
of real-time adaptation, which accounts for human
learning. Furthermore, a personal assistant agent
will be implemented that is able to monitor and
balance the functional state of the human in a timely
and knowledgeable manner.

ACKNOWLEDGMENTS

This research was partly funded by the Dutch
Ministry of Defense under progr. no. V929. Fur-
thermore, this research has partly been conducted
as part of the FP7 ICT Future Enabling Technolo-
gies program of the European Commission under
grant agreement no. 231288 (SOCIONICAL). The
authors would like to acknowledge Francien Wisse
for her efforts to gather the necessary validation
data and implementing the experimental task. The
authors would also like to thank Tibor Bosse, Jan-
Willem Streefkerk and Jan Treur for their helpful
comments.

REFERENCES

Bosse, T., Jonker, C., Meij, L. v. d., Sharpan-
skykh, A., and Treur, J. (2009). Specification
and verification of dynamics in agent models.
International Journal of Cooperative Information
Systems, 18:167–193.

Falcone, R. and Castelfranchi, C. (2004). Trust
dynamics: How trust is influenced by direct ex-
periences and by trust itself. In Proceedings
of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AA-
MAS’04), pages 740–747, New York, USA.

Guha, R., Kumar, R., Raghavan, P., and Tomkins,
A. (2004). Propagation of trust and distrust. In
Proceedings of the 13th international conference
on World Wide Web (WWW ’04), pages 403–412,
New York, NY. ACM.

Hoogendoorn, M., Jaffry, S., and Treur, J. (2008).
Modeling dynamics of relative trust of compet-
itive information agents. In Klusch, M., Pe-
choucek, M., and Polleres, A., editors, Proceed-
ings of the 12th International Workshop on Co-
operative Information Agents (CIA’08), volume
5180 of LNAI, pages 55–70. Springer.

Hoogendoorn, M., Jaffry, S., and Treur, J. (2009a).
Modelling trust dynamics from a neurological
perspective. In Proceedings of the Second Inter-
national Conference on Cognitive Neurodynamics
(ICCN’09). Springer Verlag. To appear.

Hoogendoorn, M., Jaffry, S. W., and Treur, J.
(2009b). An adaptive agent model estimating hu-
man trust in information sources. In Baeza-Yates,
R., Lang, J., Mitra, S., Parsons, S., and Pasi, G.,
editors, Proceedings of the 9th IEEE/WIC/ACM



International Conference on Intelligent Agent
Technology (IAT’09), pages 458–465.

Jonker, C. M., Schalken, J. J. P., Theeuwes, J.,
and Treur, J. (2004). Human experiments in
trust dynamics. In Proceedings of the Second
International Conference on Trust Management
(iTrust 2004), volume 2995 of LNCS, pages 206–
220. Springer Verlag.

Jonker, C. M. and Treur, J. (1998). Formal analysis
of models for the dynamics of trust based on ex-
periences. In Garijo, F. J. and Boman, M., editors,
Multi-Agent System Engineering, Proceedings of
the 9th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, MAA-
MAW’99, volume 1647, pages 221–232, Berlin.
Springer Verlag.

Maanen, P.-P. v., Klos, T., and Dongen, K. v. (2007).
Aiding human reliance decision making using
computational models of trust. In Proceedings of
the Workshop on Communication between Human
and Artificial Agents (CHAA’07), pages 372–
376, Fremont, California, USA. IEEE Computer
Society Press. Co-located with The 2007 IEEE
IAT/WIC/ACM International Conference on In-
telligent Agent Technology.

Ramchurn, S. D., Huynh, D., and Jennings, N. R.
(2004). Trust in multi-agent systems. The
Knowledge Engineering Review, 19(1):1–25.

Sabater, J. and Sierra, C. (2005). Review on com-
putational trust and reputation models. Artificial
Intelligence Review, 24(1):33–60.

APPENDIX

In this appendix part of the C#-code that was used
for parameter adaptation and model validation is
listed and described. This part is called the DModel
class and is used to calculate the trust values at a
certain time point (that is, for one of the areas)
and given a certain operator (either of the two
operators), certain parameter settings (within certain
intervals) and model type (either the independent
or relative trust model). The in this appendix listed
code consists of the following four methods:

1) Dmodel: This is the constructor of the
DModel class, which initializes the indepen-
dent or relative trust model. For each opera-
tor (indicated by “operatornumber”) and each

model type (indicated by “type”) a DModel-
object is created.

2) UpdateValuesIndepdendentModel: Calcu-
lates the independent trust value (called
“data.values”) for each trustee (the operator/-
participant him- or herself, the other partici-
pant and the supporting software agent).

3) UpdateValuesRelativeModel: Calculates the
relative trust value for each trustee. The
“UpdateValues”-methods are called from the
parent class of DModel for each time step.2

4) UpdateDistance: Calculates the distance (the
inverse of the accuracy, depicted by θX

in Algorithm 1) between the by the trust
model predicted reliance decision (depicted
by RM(e,X) in Algorithm 1) and the
actual human reliance decision (depicted
by RH(e) in Algorithm 1). For param-
eter adaptation purposes, this method is
called from the parent class of DModel
for each time step. This is done after
either “UpdateValuesIndepdendentModel” or
“UpdateValuesRelativeModel” is called to
calculate the current trust values. In this pro-
cedure values for “data.dmodelParameters”
are altered as is shown in Algorithm 1.

5) TrusteeWithMaxTrust: Calculates the
trustee for which there is currently the
maximum trust value. This method is called
from the method “UpdateDistance()” in
order to determine the predicted reliance
decision. The current trust values are
calculated either by the above described
“UpdateValuesIndepdendentModel()” or the
“UpdateValuesRelativeModel()” method.

Below the code of the DModel class is listed.

1 namespace UAVtrus tSe rve r
{

3 / / / <summary>
/ / / T h i s c l a s s was w r i t t e n by Waqar J a f f r y

and Pe ter−Paul van Maanen 2010 . No th ing
o f t h i s code may be used or c o p i e d

w i t h o u t t h e p e r m i s s i o n o f t h e a u t h o r s .
T h i s s o f t w a r e e s t i m a t e s t h e c u r r e n t
t r u s t o f a UAV−o p e r a t o r ( o p e r a t o r 1 or

2Due to limitations of space, the code of the parent class of
DModel is omitted. Those further interested in this code are referred
to http://www.few.vu.nl/˜pp/trust.



2) i n d i f f e r e n t t r u s t e e s ( s e l f , o t h e r
and s y s t e m ) .

5 / / / </summary>

7 p u b l i c c l a s s DModel : Model {
double [ ] P o s i t i v e T r u s t ;

9 double [ ] N e g a t i v e T r u s t ;

11 p u b l i c DModel ( i n t opnr , Data d , bool t u n e )
: base ( 0 , opnr , d , t u n e ) {

13 / / C o n s t r u c t o r p a r t l y i n h e r i t e d from
p a r e n t ( code ommited )

P o s i t i v e T r u s t = new double [ d a t a . v a l u e s .
GetLength ( 2 ) ] ;

15 N e g a t i v e T r u s t = new double [ d a t a . v a l u e s .
GetLength ( 2 ) ] ;

}
17

/ / Method c a l l e d t o do i t e r a t i o n o f t h e
i n d e p e n d e n t t r u s t model t o upd a t e t o
t h e n e x t v a l u e

19 p u b l i c o v e r r i d e void
Upda teVa lues Independen tMode l ( ) {

i n t g r i d x , g r i d y ;
21 double t o t a l p e n a l t y , n e w t r u s t , o l d t r u s t ;

double decay = d a t a . d m o d e l P a r a m e t e r s [
o p e ra t o r n um b e r , 0 ] ;

23
/ / Update t r u s t f o r each t r u s t e e

25 f o r ( i n t t r u s t e e n r = 0 ; t r u s t e e n r < d a t a .
v a l u e s . GetLength ( 2 ) ; t r u s t e e n r ++) {

/ / Use d e f a u l t v a l u e s or v a l u e s from t h e
p a r a m e t e r s f i l e

27 i f ( d a t a . modelLoopNumber [ o p e r a t o r n um b e r ,
t y p e ] == −1)

d a t a . v a l u e s [ o p e r a to r n u m b er , type ,
t r u s t e e n r ] = d a t a . d m o d e l P a r a m e t e r s [
o p e r a t o r n um b e r , t r u s t e e n r + 1 ] ;

29 e l s e { / / O t h e r w i s e c a l c u l a t e t h e new
t r u s t v a l u e s

t o t a l p e n a l t y = 0 ;
31

/ / Update t r u s t f o r each UAV
33 f o r ( i n t uavnr = 0 ; uavnr < d a t a .

cu r r en tUavWor ld [ op e r a t o r n u m b er ,
t y p e ] . uavs . Length ; uavnr ++) {

g r i d x = d a t a . cu r r en tUavWor ld [
o p e ra t o r n um b e r , t y p e ] . l a s t f e e d b a c k
[ uavnr , 0 ] ;

35 g r i d y = d a t a . cu r r en tUavWor ld [
o p e ra t o r n um b e r , t y p e ] . l a s t f e e d b a c k
[ uavnr , 1 ] ;

37 t o t a l p e n a l t y += d a t a . cu r r en tUavWor ld [
o p e ra t o r n um b e r , t y p e ] . g r i d [ g r i d x ,
g r i d y ] . p e n a l t y [ 0 , t r u s t e e n r ] ;

}
39

n e w t r u s t = t o t a l p e n a l t y / d a t a .
cu r r en tUavWor ld [ op e r a t o r n u m b er ,
t y p e ] . uavs . Length ;

41 o l d t r u s t = d a t a . v a l u e s [ o p e r a t o r n u m be r ,
type , t r u s t e e n r ] ;

d a t a . v a l u e s [ o p e r a to r n u m be r , type ,
t r u s t e e n r ] = decay ∗ o l d t r u s t + (1
− decay ) ∗ n e w t r u s t ;

43 d a t a . d m o d e l P a r a m e t e r s [ o p e r a t o r n u mb e r , 1
+ t r u s t e e n r ] = d a t a . v a l u e s [

o p e ra t o r n um b e r , type , t r u s t e e n r ] ;
/ / For s t o r i n g t h e l a s t v a l u e as
parame te r

}
45 }

}
47

/ / Method c a l l e d t o do i t e r a t i o n o f t h e
r e l a t i v e t r u s t model t o u pd a t e t o t h e
n e x t v a l u e

49 p u b l i c o v e r r i d e void
U p d a t e V a l u e s R e l a t i v e M o d e l ( ) {

double [ ] d e l t a P o s i t i v e T r u s t ;
51 double [ ] d e l t a N e g a t i v e T r u s t ;

double S i g m a P o s i t i v e T r u s t = 0 ,
S i g m a N e g a t i v e T r u s t = 0 ;

53 d e l t a N e g a t i v e T r u s t = new double [ d a t a .
v a l u e s . GetLength ( 2 ) ] ;

d e l t a P o s i t i v e T r u s t = new double [ d a t a .
v a l u e s . GetLength ( 2 ) ] ;

55 i n t g r i d x , g r i d y ;
double Gama = d a t a . d m o d e l P a r a m e t e r s [

o p e ra t o r n um b e r , 0 ] ;
57 double Beta = d a t a .

d m o d e l P a r a m e t e r s [
o p e r a t o r n um b e r , 1 ] ;

double Eta = d a t a .
d m o d e l P a r a m e t e r s [
o p e r a t o r n um b e r , 2 ] ;

59 double INTERVAL LENGTH = 0 . 1 ;

61 / / Use d e f a u l t v a l u e s or v a l u e s from t h e
p a r a m e t e r s f i l e ( a f t e r a d a p t a t i o n )

i f ( d a t a . modelLoopNumber [
o p e ra t o r n um b e r , t y p e ] == −1)
{

63 P o s i t i v e T r u s t [ 0 ] = d a t a . d m o d e l P a r a m e t e r s
[ o p e r a to r n u m be r , 3 ] ;

N e g a t i v e T r u s t [ 0 ] = d a t a . d m o d e l P a r a m e t e r s
[ o p e r a to r n u m be r , 4 ] ;

65 P o s i t i v e T r u s t [ 1 ] = d a t a . d m o d e l P a r a m e t e r s
[ o p e r a to r n u m be r , 5 ] ;

N e g a t i v e T r u s t [ 1 ] = d a t a . d m o d e l P a r a m e t e r s
[ o p e r a to r n u m be r , 6 ] ;

67 P o s i t i v e T r u s t [ 2 ] = d a t a . d m o d e l P a r a m e t e r s
[ o p e r a to r n u m be r , 7 ] ;

N e g a t i v e T r u s t [ 2 ] = d a t a . d m o d e l P a r a m e t e r s
[ o p e r a to r n u m be r , 8 ] ;

69 }
e l s e {

71 / / Update t r u s t v a l u e f o r each UAV
f o r ( i n t uavnr = 0 ; uavnr < d a t a .

cu r r en tUavWor ld [ op e r a t o r n u m b e r , t y p e
] . uavs . Length ; uavnr ++) {

73 double p e n a l t y = 0 ;
g r i d x = d a t a . cu r r en tUavWor ld [

o p e r a t o r n um b e r , t y p e ] . l a s t f e e d b a c k [
uavnr , 0 ] ;



75 g r i d y = d a t a . cu r r en tUavWor ld [
o p e r a t o r n um b e r , t y p e ] . l a s t f e e d b a c k [
uavnr , 1 ] ;

77 S i g m a P o s i t i v e T r u s t = 0 ;
S i g m a N e g a t i v e T r u s t = 0 ;

79 f o r ( i n t t r u s e e r n = 0 ; t r u s e e r n < d a t a .
v a l u e s . GetLength ( 2 ) ; t r u s e e r n += 1)
{

S i g m a P o s i t i v e T r u s t += P o s i t i v e T r u s t [
t r u s e e r n ] ;

81 S i g m a N e g a t i v e T r u s t += N e g a t i v e T r u s t [
t r u s e e r n ] ;

}
83

/ / Update t r u s t v a l u e f o r each t r u s t e e
85 f o r ( i n t C u r r e n t T r u s t e e = 0 ;

C u r r e n t T r u s t e e < d a t a . v a l u e s .
GetLength ( 2 ) ; C u r r e n t T r u s t e e += 1)
{

p e n a l t y = d a t a . cu r r en tUavWor ld [
o p e ra t o r n um b e r , t y p e ] . g r i d [ g r i d x ,
g r i d y ] . p e n a l t y [ 0 , C u r r e n t T r u s t e e ] ;

87
i f ( p e n a l t y < 0 . 5 ) {

89 d e l t a P o s i t i v e T r u s t [ C u r r e n t T r u s t e e ] =
Beta ∗ ( E ta ∗ (1 − P o s i t i v e T r u s t [
C u r r e n t T r u s t e e ] ) − (1 − Eta ) ∗ (1
− d a t a . v a l u e s . GetLength ( 2 ) ∗

P o s i t i v e T r u s t [ C u r r e n t T r u s t e e ] / (
S i g m a P o s i t i v e T r u s t ) ) ∗
P o s i t i v e T r u s t [ C u r r e n t T r u s t e e ] ∗
(1 − P o s i t i v e T r u s t [ C u r r e n t T r u s t e e
] ) ) ∗ INTERVAL LENGTH ;

d e l t a N e g a t i v e T r u s t [ C u r r e n t T r u s t e e ] =
(−(1 − Gama ) ∗ N e g a t i v e T r u s t [
C u r r e n t T r u s t e e ] ∗ INTERVAL LENGTH
) ;

91 }
e l s e i f ( p e n a l t y == 0 . 5 ) {

93 d e l t a P o s i t i v e T r u s t [ C u r r e n t T r u s t e e ] =
(−(1 − Gama ) ∗ P o s i t i v e T r u s t [
C u r r e n t T r u s t e e ] ∗ INTERVAL LENGTH
) ;

d e l t a N e g a t i v e T r u s t [ C u r r e n t T r u s t e e ] =
(−(1 − Gama ) ∗ N e g a t i v e T r u s t [
C u r r e n t T r u s t e e ] ∗ INTERVAL LENGTH
) ;

95 }
e l s e {

97 d e l t a N e g a t i v e T r u s t [ C u r r e n t T r u s t e e ] =
Beta ∗ ( E ta ∗ (1 − N e g a t i v e T r u s t [
C u r r e n t T r u s t e e ] ) − (1 − Eta ) ∗ (1
− d a t a . v a l u e s . GetLength ( 2 ) ∗

N e g a t i v e T r u s t [ C u r r e n t T r u s t e e ] / (
S i g m a N e g a t i v e T r u s t ) ) ∗
N e g a t i v e T r u s t [ C u r r e n t T r u s t e e ] ∗
(1 − N e g a t i v e T r u s t [ C u r r e n t T r u s t e e
] ) ) ∗ INTERVAL LENGTH ;

d e l t a P o s i t i v e T r u s t [ C u r r e n t T r u s t e e ] =
(−(1 − Gama ) ∗ P o s i t i v e T r u s t [
C u r r e n t T r u s t e e ] ∗ INTERVAL LENGTH
) ;

99 }
}

101
f o r ( i n t C u r r e n t T r u s t e e = 0 ;

C u r r e n t T r u s t e e < d a t a . v a l u e s .
GetLength ( 2 ) ; C u r r e n t T r u s t e e += 1)
{

103 P o s i t i v e T r u s t [ C u r r e n t T r u s t e e ] +=
d e l t a P o s i t i v e T r u s t [ C u r r e n t T r u s t e e
] ;

N e g a t i v e T r u s t [ C u r r e n t T r u s t e e ] +=
d e l t a N e g a t i v e T r u s t [ C u r r e n t T r u s t e e
] ;

105 }
}

107 }

109 f o r ( i n t C u r r e n t T r u s t e e = 0 ;
C u r r e n t T r u s t e e < d a t a . v a l u e s .
GetLength ( 2 ) ; C u r r e n t T r u s t e e ++) {

d a t a . v a l u e s [ o p e r a to r n u m be r , type ,
C u r r e n t T r u s t e e ] = ( P o s i t i v e T r u s t [
C u r r e n t T r u s t e e ] − N e g a t i v e T r u s t [
C u r r e n t T r u s t e e ] + 1 ) / 2 ;

111 d a t a . d m o d e l P a r a m e t e r s [ o p e r a t o r n u mb e r ,
C u r r e n t T r u s t e e ∗ 2 + 3] =
P o s i t i v e T r u s t [ C u r r e n t T r u s t e e ] ; / /
For s t o r i n g t h e l a s t v a l u e as
parame te r

d a t a . d m o d e l P a r a m e t e r s [ op e r a t o r n u m b e r ,
C u r r e n t T r u s t e e ∗ 2 + 4] =
N e g a t i v e T r u s t [ C u r r e n t T r u s t e e ] ; / /
For s t o r i n g t h e l a s t v a l u e as
parame te r

113 }
}

115
/ / Update t h e d i s t a n c e be tween t h e

g e n e r a t e d model o u t p u t ( e i t h e r
i n d e p e n d e n t or r e l a t i v e ) and t h e
v a l i d a t i o n da ta f o r one t i m e s t e p

117 / / The t r u s t v a l u e s ( da ta . v a l u e s ) have
a l r e a d y been upda ted f o r t h e 3
t r u s t e e s g i v e n t h e c u r r e n t parame te r
s e t t i n g s ( da ta . dmode lParameters )

p u b l i c o v e r r i d e void U p d a t e D i s t a n c e ( ) {
119 i n t g r i d x , g r i d y , d i s t a n c e , m a x t r u s t ;

121 / / Update t h e d i s t a n c e t o t h e pr op er
v a l u e

f o r ( i n t uavnr = 0 ; uavnr < d a t a .
cu r r en tUavWor ld [ op e r a t o r n u m b e r , t y p e
] . uavs . GetLength ( 0 ) ; uavnr ++) {

123 g r i d x = d a t a . cu r r en tUavWor ld [
o p e r a t o r n um b e r , t y p e ] . l a s t f e e d b a c k [
uavnr , 0 ] ;

g r i d y = d a t a . cu r r en tUavWor ld [
o p e r a t o r n um b e r , t y p e ] . l a s t f e e d b a c k [
uavnr , 1 ] ;

125
m a x t r u s t = Trus t eeWi thMaxTrus t ( ) ;

127



/ / d i s t a n c e == 0 when i n d e e d t h e human
r e l i e d on t h e t r u s t e e w i t h t h e
h i g h e s t model ’ s e s t i m a t e d t r u s t
va lue , o t h e r w i s e t h e d i s t a n c e i s
h i g h e r (1 or 2 )

129 i f ( d a t a . cu r r en tUavWor ld [ o p e ra t o r n um b e r ,
t y p e ] . g r i d [ g r i d x , g r i d y ] . r e l i e d o n

[ 0 , m a x t r u s t ] == 1)
d i s t a n c e = 0 ;

131 e l s e i f ( d a t a . cu r r en tUavWor ld [
o p e r a t o r n um b e r , t y p e ] . g r i d [ g r i d x ,
g r i d y ] . r e l i e d o n [ 0 , 0 ] != 1 && d a t a .
cu r r en tUavWor ld [ op e r a t o r n u m b e r , t y p e
] . g r i d [ g r i d x , g r i d y ] . r e l i e d o n [ 0 , 1 ]
!= 1 && d a t a . cu r r en tUavWor ld [
o p e r a t o r n um b e r , t y p e ] . g r i d [ g r i d x ,
g r i d y ] . r e l i e d o n [ 0 , 2 ] != 1 )

d i s t a n c e = 0 ;
133 e l s e

d i s t a n c e = 1 ;
135

/ / Update v a l u e a c c o r d i n g t o t h e g i v e n
d i s t a n c e

137 d a t a . m o d e l D i s t a n c e [ o p e ra t o r n u mb e r , t y p e ]
+= d i s t a n c e ;

}
139 }

141 / / Re tu rn t h e t r u s t e e ( 0 , 1 or 2 ) w i t h t h e
most t r u s t a c c o r d i n g t o t h e c u r r e n t

t r u s t v a l u e s ( da ta . v a l u e s )
p u b l i c i n t Trus t eeWi thMaxTrus t ( ) {

143 i n t i n d e x = 0 ;
f o r ( i n t t r u s t e e n r = 1 ; t r u s t e e n r < d a t a .

v a l u e s . GetLength ( 2 ) ; t r u s t e e n r ++) / /
f o r a l l t r u s t e e s

145 i f ( d a t a . v a l u e s [ o pe r a t o rn u m b e r , type ,
t r u s t e e n r ] > d a t a . v a l u e s [
o p e r a t o r n um b e r , type , i n d e x ] )

i n d e x = t r u s t e e n r ;
147

re turn i n d e x ;
149 }

}
151 }

dmodel.cs


