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Abstract Malaria is caused by Plasmodium parasite. It is
transmitted by female Anopheles bite. Thick and thin blood
smears of the patient are manually examined by an expert
pathologist with the help of a microscope to diagnose the
disease. Such expert pathologists may not be available in
many parts of the world due to poor health facilities. More-
over, manual inspection requires full concentration of the
pathologist and it is a tedious and time consuming way to de-
tect the malaria. Therefore, development of automated sys-
tems is momentous for a quick and reliable detection of
malaria. It can reduce the false negative rate and it can help
in detecting the disease at early stages where it can be cured
effectively. In this paper, we present a computer aided de-
sign (CAD) to automatically detect malarial parasite from
microscopic blood images. The proposed method uses bi-
lateral filtering to remove the noise and enhance the im-
age quality. Adaptive thresholding and morphological image
processing algorithms are used to detect the malaria para-
sites inside individual cell. To measure the efficiency of the
proposed algorithm, we have tested our method on a NIH
Malaria dataset and also compared the results with existing
similar methods. Our method achieved the detection accu-
racy of more than 91% outperforming the competing meth-
ods. The results show that the proposed algorithm is reliable
and can be of great assistance to the pathologists and hema-
tologists for accurate malaria parasite detection.
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1 Introduction

Malaria is one of the leading causes of death over the world
with almost 400,000 deaths per year. More than 200 million
cases of malaria are reported every year worldwide (WHO,
2019). Malaria is caused by a protozoan parasite of the genus
Plasmodium and it is usually diagnosed by an expert pathol-
ogist manually by examining the blood cells of the patient
under a microscope. The manual examination is a tedious,
time consuming, and error prone way to detect the malaria.
Moreover, it is difficult to analyze each blood smear with
full concentration as in many parts of the world the patient
to doctor ratio is significantly below the World Health Orga-
nization (WHO) recommendations, one physician per 1,000
population. The statistics show that over 45% of WHO mem-
ber states do not meet this recommendation (WHO, 2019).
According to the malaria report of World Health Organiza-
tion (WHO, 2018) most of the deaths due to malaria occur
in continental Africa and in 2017 among 435,000 deaths
93% were from Africa. This is because in that region malaria
finds suitable environment to grow, and secondly, very less
resources are available there to prevent this disease. In such
situations, detection of malaria should be rapid and accurate
to help in early identification and treatment. Therefore, de-
velopment of automated systems is momentous for a quick,
reliable, and timely detection of malaria.

Malaria is transferred into human body from the bites of
female Anopheles mosquitoes. This parasite infects the red
blood cells (RBC) and goes through a complex life cycle.
During the life cycle, the malaria parasite grows and repro-
duces which damages the RBCs. At different stages of life,
the parasite changes its shape which can be seen under mi-
croscope. There are five species of Plasmodium which cause
malaria in humans: Plasmodium falciparum, Plasmodium
vivax, Plasmodium malariae, Plasmodium ovale, Plasmod-
ium knowlesi. Among these five species, Plasmodium falci-
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parum and Plasmodium vivax are the most common (Warhurst
and Williams, 1996; Mahmoud et al., 2019).

The manual method for malaria diagnosis is widely used
because it is less expensive and can identify all species of
malaria. This method is commonly used to find severity of
malaria, testing of medicine against malaria, and also used to
identify any parasites left after a treatment. For microscopic
analysis of blood two kinds of blood smears are prepared:
thick smear and thin smear. Thick smear can detect malaria
more fast and accurately as compared to thin smear. On the
other hand, the thin smear can detect species of malaria and
can also identify severity of malaria (Warhurst and Williams,
1996; Das et al., 2015; Rosado et al., 2016; Jan et al., 2018).
Besides having all these benefits, light microscopy has a
huge disadvantage of extensive training, and correctness of
result entirely depends on the skills of the microscopist. There
exist some other techniques for detection of malaria, such as,
microarrays (Patarakul, 2008), polymerase chain reaction
(PCR) (Johnston et al., 2006), rapid diagnostic test (RDT)
(Moody, 2002), quantitative buffy coat (QBC) (Clendennen III
et al., 1995), and immunofluorescent antibody testing (IFA)
(She et al., 2007) etc. These techniques are either expensive
or very complex to perform, hence the light microscopy still
stays the commonly used technique for detection of malaria.

In recent years, the automatic detection of malaria has
been an important research area. There are some key pro-
cessing steps performed in almost every automatic malaria
diagnostic system. The first step is the acquisition of digi-
tal microscopic blood images followed by a preprocessing
performed in order to remove noise and artifacts from im-
ages. Third step is the separation of RBCs, white blood cells,
platelets, and parasites, etc. In fourth step, some features are
computed to differentiate between segmented objects and fi-
nally based on the computed features RBCs are classified in
either infected or uninfected category.

In the malaria detection method presented by Yang et al.
(2017), the thin blood smear images obtained through light
microscopy are used and noise in images is removed by
using mean filtering. Histogram thresholding is applied for
segmentation and images are classified by using support vec-
tor machine (SVM). After preprocessing, the method of Lin-
der et al. (2014) classifies the images using SVM on the ba-
sis of local binary pattern (LBP) and the algorithm of Mo-
hammed and Abdelrahman (2017) does the same but uses
normalized cross-correlation feasture. After segmentation,
the classification of Kareem et al. (2012) is performed based
on Hue Saturation Value (HSV), relative size, and geome-
try. The algorithm presented by Nasir et al. (2012) uses K-
mean clustering to segment image followed by seeded re-
gion growing algorithm to remove any remaining unwanted
region.

A number of malaria detection algorithms use the Otsu
thresholding (Otsu, 1979) to segment the objects of interests

and then use different classifiers to separate the cells into af-
fected and non-affected, e.g., Gatc et al. (2013); Malihi et al.
(2013); Savkare and Narote (2015). Histogram based tech-
niques to segment the blood cells from the image are also
widely used in malaria detection algorithm e.g., (Zou et al.,
2010; Anggraini et al., 2011; Kaewkamnerd et al., 2012;
Mushabe et al., 2013; Maiseli et al., 2014). Anggraini et al.
(2011) removed the noise in thin blood smear through me-
dian filtering and segmentation was performed using Otsu
thresholding (Otsu, 1979). Naive bayes tree is used to clas-
sify cells based on the color intensity of cells. Le et al. (2008)
proposed a technique based on supervised thresholding and
tested it for both thin and thick blood smear.

Pan et al. (2018) presented an algorithm in which they
classified cells by using deep convolutional neural networks.
A deep learning based malaria detection system was pre-
sented by Hung et al. (2017). The detection and classifica-
tion is performed using faster R-CNN followed by AlexNet
for fine classification. The malaria detectors proposed by
(Liang et al., 2016; Bibin et al., 2017; Poostchi et al., 2018;
Vijayalakshmi and Kanna, 2019) also use deep learning. Liang
et al. (2016) proposed a technique in which the images were
first segmented and then to separate infected and uninfected
cells a convolutional neural network was applied. E Ross
et al. (2006) used different morphological methods to clas-
sify thin blood smear microscopic images as malaria in-
fected and uninfected. In malaria detection approach pre-
sented by Elter et al. (2011), the infected and uninfected
cells were classified by using a SVM based on texture and
morphological features. The method of Das et al. (2012) pre-
processed images with illumination correction and noise re-
duction by geometric mean filter.

In this paper, we present a computer aided diagnosis sys-
tem for malaria detection from the microscopic blood im-
ages. The algorithm is fully automatic and does not require
any assistance from the user. There are two major advan-
tages of the proposed method. First, instead of using the con-
ventional preprocessing techniques, it exploits bilateral fil-
tering to remove noise from the image. Second, we propose
to use of object contours and 8-connected rule to identify the
parasites in the cell. The performance of the proposed algo-
rithm was evaluated on a publicly available malaria dataset
and also compared with existing similar methods.

2 Materials and Methods

The proposed algorithm works in two steps. First, the cell
images were processed to remove the noise and enhance the
quality of the image. Second, the image was processed to
detect the parasite though adaptive thresholding and mor-
phological operations. The Infected cells contain parasites
which serve as discriminator between infected and uninfected
cells.
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(a) (b) (c) (d) (e)

Fig. 1 (a) A sample input color image of a RBC, (b) result of preprocessing with an ‘averaging filter’, (c) result of preprocessing with an ‘Gaussian
lowpass filter’, (d) result of preprocessing with an ‘median filter’, (e) result with proposed preprocessing.

2.1 Image Preprocessing

The first step in the proposed algorithm is the image prepro-
cessing to enhance the quality of the image and to remove
any noise present in the image. This step is important as the
performance of the later stages of the proposed algorithm
depends on the quality of the image being fed to it. Due
to poor acquisition, the images may be polluted with noise
which must be removed before processing the image for par-
asite detection. Simple blurring filters e.g., average filter, are
well-known for suppressing different noises in digital im-
ages, including, uniform noise, Gaussian noise, etc. How-
ever, in our case the images were low-resolution and content
sensitive - the boundary of the parasite in the cell is very
important and using simple blurring filters can deteriorate it
resulting in the mis-detection of the parasite. Therefore, we
need a filter that remove the noise but preserves the edges
in the image. In our method, we used bilateral filter (Tomasi
and Manduchi, 1998) to remove the noise from the image.

In the conventional filtering methods, the filter weights
depend on the spatial distance of the pixel from the filter
center. Contrastingly, the filter weights in the bilateral fil-
ter not only depend on the spatial distance but also on the
range differences i.e., color or intensity difference. The later
characteristic of the filter helps it to achieve the edge pre-
serving property. The bilateral filters are non-linear in nature
as their weights depend on the contents of the underlying
image. It is important to note that the computational com-
plexity of bilateral filtering is no more than the conventional
filtering. Let Io be the input original microscope color im-
age of size M×N. Each pixel p(x,y) ∈ Io consists of triplets
- red, green, and blue components, represented as a vector
p = [r g b]>. Here (x,y) are the spatial coordinates of the
pixel in the image. The bilateral filtered image using win-
dow of size (2d +1)× (2d +1) is obtained as:

Ī(x,y) =
1
w ∑
−d≤i, j≤d

[
Io(x+ i,y+ j) (1)

gr(‖Io(x+ i,y+ j)− Io(x,y)‖)gs(‖i‖,‖ j‖)
]
,

where gr is the range kernel that smooths the intensity differ-
ence between the center pixel at (x,y) and its neighborhood
pixel at (i, j), gs is the kernel that smooths based on the dis-
tance between the pixels (x,y) and (i, j). In our study, both
of these kernels are based on Gaussian function,

gr(i) = exp
− i2

2σ2r , (2)

gs(l,m) = exp
− (l2+m2)

2σ2
s , (3)

where σr and σs are variance parameters. In (1), weight w
normalizes the filtered value. It is computed as,

w(x,y)= ∑
−d≤i, j≤d

gr(‖Io(x+i,y+ j)−Io(x,y)‖)gs(‖i‖,‖ j‖),

(4)

A sample input image from the test dataset is shown in
Fig. 1a, and the results of applying different commonly used
filters as preprocessing are shown in Figs. (b-d). The results
of applying ‘average filter’, ‘Gaussian lowpass filter’, and
‘median filter’ are shown in Figs. 1b, 1c, and 1d, respec-
tively. The result of applying the proposed preprocessing is
shown in Fig. 1e. It can be observed that the result of aver-
age filtering (Fig. 1b) is very poor, though the noise is sup-
pressed but it also deteriorated the boundaries of the objects
which would result in poor parasite detection. The object
boundaries in Gaussian lowpass filtered image (Fig. 1c) are
better than average filtered image, however the noise is still
presented in the filtered image. Similar observation can be
made about the median filter (Fig. 1d). Compared to other
preprocessing techniques, the noise present in the input im-
age is greatly reduced by the proposed preprocessing tech-
nique without affecting the structural details present in the
image.

2.2 Parasite Detection

The proposed algorithm detects the parasites from the im-
age using its intensity values. Therefore, the preprocessed
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(a) (b) (c) (d) (e)

Fig. 2 (a) A sample input color image of an RBC, (b) image after preprocessing, (c) the grayscale image obtained from (b) by using (5), (d)
contours detected in (c), (e) image after adaptive thresholding.

image Ī is converted into grayscale I. This was achieved by
processing each pixel p by using the following formula:

v =
[
0.2989 0.5870 0.1140

]r
g
b

 (5)

Using (5), each pixel of the color image is converted into
grayscale value. The resultant image is denoted as I. In the
malaria dataset used in performance evaluation, each image
contains one red blood cell (Fig. 5). To differentiate the in-
fected and uninfected cells, different features have been used
in literature e.g., edges and color. In this research we propose
to use the object contours for this purpose instead of edges.
We recall that an object contour is a closed curve compared
to an edge which is a set of connected neighboring pixels.
Therefore, contours are expected to be more helpful in de-
tecting the objects inside a cell than the edges.

Numerous algorithms have been proposed to detect con-
tours from grayscale and color images e.g., (Catanzaro et al.,
2009; Leordeanu et al., 2012; Yang et al., 2016; Li et al.,
2018). Any of such approach can be used to detect the bound-
aries of the objects. However, we find that in the problem un-
der discussion, any simple contour detection technique can
be used as the images are colorless and textureless. To keep
the proposed algorithm simple and efficient, we used Mat-
lab built-in contour detection algorithm. It returns a contour
matrix C that consists of two rows defining the cn contour
levels.The very first column contains the contour levels A
and number of vertices na at each level while the remaining
columns contains the coordinates (x,y) value of the vertices.
In each column, the first row contains x value of the vertex
and the second row corresponds to the y value of the vertex.

C =

[
Aa x1a x2a · · · xna Ab x1b · · ·

V (na) y1a y2a · · · yna V (nb) y1b · · ·

]
(6)

Figure 2d shows the contours detected from image in Fig. 2c.
Adaptive thresholding is performed to segment parasites.

In conventional thresholding techniques, a global threshold
value is used for all pixels in the image whereas adaptive

thresholding changes its threshold value for each pixel dy-
namically throughout the image based on its neighborhood.
In our algorithm, the threshold value for each pixel was de-
termined statistically which considered local intensity value
of the neighbor pixels. This helps to remove the false pos-
itives, retaining only those pixel which are potential para-
sites. For a pixel in the contour image Ic, in a window of
size w×w centered at that pixel (x,y) was processed to es-
timate its threshold value t.

t(x,y) =
1

w2

w
2

∑
i=−w

2

w
2

∑
j=−w

2

Ic(x+ i,y+ j) (7)

If pixel value p(x,y) is greater than its respective thresh-
old t(x,y), it is assigned foreground value otherwise it as-
sumes background value. After performing the adaptive thresh-
olding a binary image Ib is obtained.

Ib(x,y) =

{
1 if Ic(x,y)≥ t(x,y)

0 if Ic(x,y)≤ t(x,y)

Figure 2e shows the result of adaptive thresholding the im-
age in Fig. 2d. Fig. 2e contains parasites, some artifacts, and
boundaries of the cells. To get the parasites, we have to elim-
inate the outer edge and other little components. For this
purpose, we will find the connectivity among pixel and its
immediate neighbors in eight directions i.e., left, right, up,
down, and diagonals. In the image Ib, we used 8-connected
components around the pixel (Fig. 3), the components that
do not qualify this rule were discarded by leaving behind the
islands which are the potential parasites (Fig. 4).

After removing edges and other artifacts from Fig. 2d,
the results are shown in Fig. 4 which is our final image I f .
The non-zero pixels in this image represent the presence of
parasites. Finally, we computer number of connected com-
ponents in I f and pass them through a threshold value to dis-
tinguish between the infected and uninfected cells. If num-
ber of components n are more than the threshold then that
the cell is classified as infected, classified as uninfected oth-
erwise. Different values of this threshold are experimented
and results are discussed in next section.



Automatic detection of Plasmodium parasites from microscopic blood images 5

Fig. 3 The 8-connectivity used to discard the edges and other small
blobs. The objects, if any, obeying the connectivity were left which are
considered parasites.

Fig. 4 Final image after removing the edges and other small blobs
through 8-connected components.

3 Results and Discussion

In this section, we report the performance of a proposed al-
gorithm on a large publicly available dataset. We also com-
pared the results of our algorithm with the other competing
methods using different objective metrics to assess the ef-
fectiveness of the proposed method.

3.1 Dataset used for Performance Evaluation

The dataset we used to evaluate the performance of the pro-
posed algorithm was taken from the Malaria Dataset pro-
vided by the National Library of Medicine (NLM), USA.
The dataset is publicly available at https://ceb.nlm.nih.
gov/repositories/malaria-datasets/ and was intro-
duced by Rajaraman et al. (2018). The dataset was collected
at Chittagong Medical College Hospital, Bangladesh with
Giemsa-stained thin blood smear slides. The blood smears
from 150 P. falciparum-infected and 50 healthy patients were
taken. The resultant images were manually annotated by ex-
pert microscopists at the Mahidol-Oxford Tropical Medicine
Research Unit in Bangkok, Thailand. To preserve the pa-
tients’ privacy, the images were de-identified before public
release. Our test dataset comprises of 2,000 images with
equal instances of parasitized and uninfected cells. Few sam-
ple infected and uninfected images from the dataset are shown
in Fig. 5.

Fig. 5 Sample microscope images of parasitized cells (top row) and
uninfected cells (bottom row) taken from Malaria dataset.

Table 1 Division of results in TP, TN, FN, and FP

Infected Uninfected

Infected True Positive (TP) False Negative (FN)

Uninfected False Positive (FP) True Negative (TN)

3.2 Objective Performance Evaluation

In this section, we evaluated the performance of the pro-
posed malaria parasite detection algorithm. The proposed
algorithm was executed for each image in the dataset and
on an image, there are four possible outcomes of the pro-
posed algorithm (Tab. 1): true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). The true
positives (TP) represent the infected cells detected without
error and the true negatives (TN) denote the uninfected cells
which are correctly detected. The false positives (FP) are the
healthy cells detected as infected and the false negative (FN)
are the infected cells detected as healthy.

To objectively quantify the performance of the proposed
algorithm five statistical metrics: Precision, Specificity, Re-
call, Accuracy, and F1-score (Fawcett, 2006; Hajian-Tilaki,
2013; Farid et al., 2018) were computed for whole dataset.
Precision demonstrates how much the model is precise in
terms of positive results. It computes out of all positive pre-
dicted values how many of them are actually positive.

Precision =
T P

T P+FP
(8)

Specificity measures the ratio of actual negatives that are
correctly identified.

Speci f icity =
T N

T N +FP
(9)

Recall computes how much of the actual positive results are
captured correctly. It helps in false negative cases such that
a patient was suffering from malaria but was diagnosed as
healthy. It is computed as following:

Recall =
T P

T P+FN
(10)

https://ceb.nlm.nih.gov/repositories/malaria-datasets/
https://ceb.nlm.nih.gov/repositories/malaria-datasets/
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Table 2 Resultant TP, TN, FN, and FP values for different values of
‘w’ and ‘n’ on the whole dataset.

w n TP TN FN FP

19 >0 886 950 114 50
19 >1 878 922 122 78
19 >2 840 943 160 57

17 >0 899 893 101 107
17 >1 848 930 152 70
17 >2 802 952 198 48

15 >0 869 897 131 103
15 >1 804 938 196 62
15 >2 760 961 240 39

Table 3 Precision, Recall, Accuracy, and F1 score for different values
of ‘w’ and ‘n’. The best results are marked in bold.

w n Precision Recall Accuracy F1 score

19 >0 0.9466 0.8860 0.9180 0.9153
19 >1 0.9184 0.8780 0.9000 0.8978
19 >2 0.9365 0.8400 0.8915 0.8856

17 >0 0.8936 0.8790 0.8960 0.8963
17 >1 0.9237 0.8480 0.8890 0.8843
17 >2 0.9435 0.8020 0.8770 0.8670

15 >0 0.8940 0.8690 0.8830 0.8813
15 >1 0.9284 0.8040 0.8710 0.8617
15 >2 0.9512 0.7600 0.8605 0.8449

Accuracy measures percentage of correctly classified cells
from the overall assessments.

Accuracy =
T P+T N

T P+FN +T N +FP
(11)

The F1 score is the weighted harmonic average of the pre-
cision and recall which ranges from 0 (worst) to 1 (best).
Therefore, this score takes both false positives and false neg-
atives into account and provides overall accuracy of the model.

F1 score = 2× Precision×Recall
Precision+Recall

(12)

In all experiments, the number of contours levels cn (6)
was set to 20, and three values for window size (w) 19, 17,
and 15 were experimented. The number of connected com-
ponents n was also empirically evaluated with values 0, 1,
and 2. The results of this evaluation are presented in Tab. 2
and Tab. 3. These results show that the best values were
produced by window size w of 19 (19× 19) and number
of connected objects (n) in the infected image should be at
least one while for uninfected cells n should be zero. For
w = 19 and n > 0, the algorithm achieves the best scores in
accuracy, recall, and F1 score. The precision score for these
settings is 0.9466 which is closest to the best results 0.9512,
with a negligible difference, less than 0.005.

We also compared the performance of the proposed al-
gorithm with other existing similar methods, including those

Table 4 Performance comparison of the proposed algorithm with
other competing methods*. The best results are marked in bold.

Method Precision Specificity Recall Accuracy F1 score

Ross - - 0.8500 0.7300 -

Das - 0.6890 0.9810 0.8400 -

Hung 0.7804 0.8519 0.7766 0.8215 0.7784

Pan 0.7439 0.8273 0.7402 0.7921 0.7420

Proposed 0.9466 0.9500 0.8860 0.9180 0.9153
* Ross (E Ross et al., 2006), Das (Das et al., 2012), Hung (Hung

et al., 2017) and Pan (Pan et al., 2018)

of E Ross et al. (2006), Das et al. (2012), Hung et al. (2017)
and Pan et al. (2018). Although this comparison would not
be equitable or well earned as the datasets used in these
methodologies were different, however it can provide a glance
on the effectiveness of the proposed method. The results
of this comparison are presented in Tab. 4. Our technique
outperformed all competing methods with 0.9466 precision,
0.9180 accuracy, and 0.9500 specificity. The recall measure
of Das method is better than ours, however its overall per-
formance is significantly poor than our method. F1 score is
considered to be more reliable as it considers both precision
and recall. Our method achieved the best F1 score of 0.9153
outperforming the compared method. These statistics show
that the proposed algorithm is reliable and effective in de-
tection of the malarial parasites from microscope images of
red blood cells.

Image preprocessing is the first step in most existing
malaria detection algorithms. The objective of this step is to
remove the noise from the image before applying the later
steps. Usually, noise is removed though order statistics fil-
ters e.g., median filter or through the blur filters e.g., aver-
age filter and Gaussian lowpass filter. We showed in Sec-
tion 2 that these filters may not be effective in many cases
(Fig. 1). In this paper, we exploited the bilateral filtering and
found that it produces better quality images that in turn im-
proves the detection accuracy of the proposed method. Here
we report the performance of the proposed algorithm with
different filters as preprocessing step. We computed the per-
formance measures without using any preprocessing, using
average filter, Gaussian lowpass filter, median filter, and bi-
lateral filter. Tab. 5 presents the results of this experiment.
The results demonstrates that the best results in most met-
rics are achieved using bilateral filtering as preprocessing in
the proposed method.

Few visual results of the proposed algorithm are pre-
sented in Figs. 6 and 7. The left-most column in each row
shows the input image, the second, third, and fourth columns
show the results of intermediate steps of the algorithm. The
final results are shown in the right-most column. Fig. 6 shows
the five images from the test dataset that are infected and our
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Table 5 Performance comparison of different preprocessing algorithms. The best results are marked in bold.

Preprocessing Method Precision Specificity Recall Accuracy F1-score

No Preproprocessing 0.8878 0.8840 0.9180 0.9010 0.9027

Average Filter 0.9305 0.9420 0.6430 0.7975 0.7605

Gaussian Lowpass Filter 0.9315 0.9490 0.7740 0.8715 0.8576

Median Filter 0.9076 0.9150 0.8350 0.8750 0.8698

Bilateral Filter 0.9466 0.9500 0.8860 0.9180 0.9153

(a) (b) (c) (d) (e)

Fig. 6 Successfully detected parasitized cells by our algorithm. (a) in-
put image, (b) preprocessed grayscale image, (c) contour image, (d)
results of adaptive thresholding, (e) final results after refinement.

method successfully detected them. Fig. 7 shows the results
of our algorithm on five uninfected images. We also report
some failure cases of our method in Fig. 8. We observed that
when the image is corrupted due to sever noise or its acqui-
sition quality is poor, our algorithm is mistaken considering
the noise bursts as parasites. Poor quality of the cell image
can result in diluted parasite which gets removed during pre-
processing or adaptive thresholding resulting in missed de-
tection.

The proposed algorithm is implemented in Matlab and is
made available free of cost for peers on the project web-page
(http://www.di.unito.it/~farid/Research/malaria.

(a) (b) (c) (d) (e)

Fig. 7 Successfully detected uninfected cells by our algorithm. (a) in-
put image, (b) preprocessed grayscale image, (c) contour image, (d)
results of adaptive thresholding, (e) final results after refinement.

html). We also computed the time complexity of the pro-
posed method. For this purpose, the proposed algorithm was
executed over the whole dataset and time for each image
was recorded and their average was computed. The exper-
iment was executed on Intel R© CoreTM i5 processor with
8GB RAM and 64-bit operating system. The results show
that the proposed malaria detection algorithm is very fast
and takes an average of 2.8 seconds to process one image.
This time also includes the file input/output time. An effi-
cient implementation of the algorithm can further improve
the execution time.

4 Conclusions

In this paper, we presented a novel algorithm to automati-
cally detect malaria from microscope blood smears. The al-

http://www.di.unito.it/~farid/Research/malaria.html
http://www.di.unito.it/~farid/Research/malaria.html
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(a) (b) (c) (d) (e)

Fig. 8 Failure cases. Top two rows show examples of parasitized cells
which our method could not detect. The bottom row shows a case
where cell was uninfected but detected as infected. (a) input image, (b)
preprocessed grayscale image, (c) contour image, (d) results of adap-
tive thresholding, (e) final results after refinement.

gorithm preprocessed the cell images using bilateral filtering
which has not been explored in previous techniques. Then
by using adaptive thresholding and 8-connected rules, nor-
mal and infected cells were separated. The performance of
the proposed algorithm was evaluated on standard malaria
dataset consisting of large number of images with infected
and healthy blood cells. The performance was computed us-
ing five statistical metrics and compared with existing simi-
lar techniques. The proposed method outperformed the com-
pared method by achieving accuracy and F1 scores more
than 0.91. The results reveal the efficacy of the proposed
algorithm.
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