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Abstract—Gait has emerged as a distinguishable human bi-
ological trait. It refers to the walking style of an individual
and is considered an important biometric feature for person
identification. Codebook based gait recognition algorithms have
demonstrated excellent performance by achieving high recog-
nition rates. However, such methods construct a codebook for
each database or scenario. In this paper, we investigate the idea
of using a generic codebook for gait recognition. The proposed
codebook is built by using spatiotemporal characteristics of
gait and is based on a large diverse synthetic gait database.
We also propose a gait recognition algorithm based on this
generic codebook. The advantages of the proposed algorithm over
the existing methods include its independency from generating
a codebook for each database, rather the proposed generic
codebook can be used to encode any gait scenario. Moreover, the
proposed algorithm is model free and does not require human
body segmentation or modeling. The performance of the proposed
generic codebook-based gait recognition algorithm is evaluated
on two large gait databases TUM GAID and CMU MoBo,
and recognition rate reveals the effectiveness of the proposed
algorithm.

Index Terms—Gait recognition, generic codebook, spatiotem-
poral features, Fisher vector encoding

I. INTRODUCTION

In the recent years, biometrics have attracted significant
research efforts due to its various applications in access
control, human surveillance and authentication. Different dis-
tinguishing biological traits have been proven to be effective
means for person identification [1]. Biometrics refers to the
use of biological and behavioral characteristics for individual
identification. Biological characteristics, such as, iris, fin-
gerprints, DNA, facial features, and earlobes structure have
been proven to be unique for each individual. The behavioral
characteristics include voice, gait and others. Gait refers to the
unique manner or style of walking. Human gait is different
from other biometric features as it can be captured from
a distance and does not require human interaction with the
imaging device. Moreover, the gait features can be computed
from low-resolution videos. These characteristics make it an
ideal choice for surveillance systems, particularly at security-
sensitive and monitoring environments such as banks, military
bases, etc.

The gait biometric indeed has advantages over the other
physiological biometrics, particularly its acquisition from dis-
tance and without individual interaction. However, gait recog-

nition is challenging in many aspects due to the variations
that may occur in clothing, footwear, walking surface, walk-
ing speed, injuries and others. Other biometric modalities to
identify the individuals, such as iris and fingerprints, might be
more powerful than gait, nevertheless its ability to recognize
human from distance and without any interaction with the
system makes it irreplaceable in many applications such as
visual surveillance.

Gait recognition has received significant research in the
recent years and various approaches have been proposed which
can be classified into two broad categories: model-based ap-
proaches and model-free approaches. Model-based techniques
build a gait signature using the human body structure and
motion models. Several human body parts and joint positions
are tracked over time and used to identify the walkers [2]-
[5]. In [6], the authors modeled the human silhouette structure
using seven different ellipses representing the various human
body regions. Several statistical measurements on these re-
gions are computed for gait and gender classification. The
algorithm proposed in [7] locates the joint locations and
computes the joint angle trajectories at these locations to form
a gait signature.

The gait recognition algorithm proposed in [§]] builds a 3D
voxel model using the ellipsoids fitting technique into four
different lower limbs components and the derived features are
represented using a Fourier based representation. Bouchrika
et al. [9] exploits the elliptic Fourier descriptors to extract
features from human joints which are used to form a model
for person identification. The gait feature proposed in [10] is
composed of the angular motion of the hip and thigh. The
authors in [11]] split the human’s body region into three parts
and the variance of these parts over time are combined to
obtain a gait feature.

Recent studies [9], [12], [13] have shown that the model-
based gait recognition algorithms are effective and can deal
with occlusion to some extent. However, the performance of
these algorithms largely depend on the localization of torso,
which cannot be easily extracted from the underlying model
in gait sequences. Moreover, the model-based approaches
are computationally expensive and are sensitive to the video
quality [12].

The model-free approaches do not use a structural model
of human motion, instead they operate on the sequence of



extracted binary human silhouettes. Perhaps, the most simple
and effective technique is gait energy image (GEI) [14], [[15],
which has been extensively used in model-free gait recognition
algorithms. A GEI is computed by extracting the human body
silhouette using background modeling techniques and aver-
aged them over time in a gait cycle. The algorithm proposed
in [16] extracts the human skeleton information from the
silhouette images and combines it with the motion information
to obtain an effective gait feature. The algorithm described
in [17]] uses several statistical measurements computed from
the human silhouette in a gait cycle. The method proposed
in [18] exploits the height and width from normalized and
scaled silhouette of human body, over a gait cycle to obtain
a gait signature. Tan et al. [19] developed a normalized
pseudo-height and width histogram using silhouette images
to recognize the individual’s walk. The algorithm proposed
in [20] exploits the human motion characteristics to drive a
gait feature.

In [22], the edges and depth gradient of the person’s
silhouette are extracted from depth images and are used to
recognize the individual’s gait. The authors in [23] obtained
the principal components coefficients from the silhouette im-
ages and wavelet descriptors respectively, and are analyzed
using Independent Component Analysis (ICA) to get the more
independent gait features. Shape analysis of human’s silhouette
is also exploited in many gait recognition techniques. Wang et
al. [24] used the Procrustes Shape Analysis (PSA) to obtain
Procrustes Mean Shape (PMS) from a sequence of silhouettes
as gait signature. PMS represents the both motion and body
shape into a unified descriptor and similarity is measured using
Procrustes Distance.

The silhouette based model-free approaches are computa-
tionally efficient compared to the model-based technqiues and
they have demonstrated high recognition results on various
public benchmark gait databases. However, their performance
is somewhat sensitive to the variation in the silhouette shapes
and thus depends on the precise silhouette segmentation.
An inaccurate segmentation may lower the recognition ac-
curacy [17]. In this paper, we present a model-free gait
recognition algorithm based on a novel generic codebook. The
proposed algorithm does not involve human body segmenta-
tion or gait cycle estimation.

There are two major contributions of this paper. First, a
novel proposal of using a generic codebook to encode the
motion descriptors of the gait sequences is presented. In exist-
ing codebook-based gait recognition algorithms, a codebook
is generated for each dataset and used in feature encoding.
The idea of generic codebook is to use a single codebook
for gait recognition. We show that it can achieve a number of
advantages over the conventional database specific codebooks,
including: (1) Usually a codebook is generated for each dataset
to encode the available gait scenarios and it can be used to
recognize the individuals in that particular environment only.
Whereas the generic codebook can be effectively used to build
a gait signature for any type of walk sequence. (2) A generic
codebook generated from a large and diverse set of walking

styles can serve as a universal codebook and can be used
to encode any kind of individual’s walk. (3) Experimental
evaluation on two benchmark gait datasets demonstrate that
the generic codebook approach is efficient.

Second, a model-free, generic codebook-based gait recog-
nition algorithm is proposed. The proposed algorithm is based
on our previous work [25] in which a spatiotemporal gait
representation is presented. In contrast to most existing gait
recognition algorithms that require the extraction of human
body silhouette, contour or other skeletal information; the
proposed approach is model-free and it does not involve any
kind of human body segmentation or the gait cycle computa-
tion. Therefore, the performance of the proposed algorithm is
particularly better than other competing approaches under low
resolution and low quality video sequences.

An extensive experimental evaluation on two large bench-
mark gait databases, TUM GAID and CMU MoBo, reveals
the effectiveness of the proposed algorithm. The results are
compared with the state-of-the-art gait recognition techniques.

The rest of the paper is organized as follows: Sect.
describes the proposed generic codebook for gait recognition.
Experimental evaluation and results are presented in Sect.
and the conclusions are drawn in Sect. [Vl

II. PROPOSED GENERIC CODEBOOK FOR GAIT
RECOGNITION

Usually the codebooks are application specific and are
generated using a subset of the target dataset. The idea of
‘generic codebook’ advocates the concept of using a single
codebook built on one dataset, and encode and test the
sequences of other datasets. However, the selection of a dataset
to obtain the generic codebook is very important as it directly
deals with feature encoding and can significantly effect the
performance of algorithm. A dataset with a large variety of
walking styles is momentous for good performance of gait
recognition algorithm. A codebook obtained from a dataset
with limited walking styles would loose important gait cues
in encoding, resulting in poor performance.

To this end, we investigated various existing gait datasets
and found that a subset of CMU Motion Capture (mocap)
dataset [26] is the most appropriate dataset for generic code-
book generation. The synthetic video sequences of walk from
mocap dataset are used to generate the generic codebook.
These sequences covers a large range of walk types e.g.
normal, slow, fast, exaggerated stride, brisk walk, wander,
etc. A total of 80 video sequences are used to generate the
generic codebook. Fig. [I] shows few sample images of a
normal walk sequence from the selected dataset. To build the
generic codebook, the spatiotemporal motion information of
each mocap sequence is used.

A. Feature selection

Several features have been investigated and proposed to ef-
ficiently recognize individuals’ gait. Lately, the dense trajecto-
ries have shown good performance in action recognition [21]],
[27]. Wang et al. [27] proposed the computation of Histogram
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Fig. 1. Sample images from a synthetic gait sequence of mocap dataset used to generate the generic codebook.

of Oriented Gradient (HOG) and Histogram of Optical Flow
(HOF) features along the dense trajectories. Moreover, to
encode the relative motion information between the pixels
along the horizontal and vertical axis, the derivatives along the
respective component of optical flow are computed, and their
orientation information is quantized into histograms. These
features are known as Motion Boundary Histogram (MBH),
and represented as MBH, and MBH,, respectively. In [25],
the performance of several motion descriptors including, HOG,
HOF, MBH, and their various combinations is evaluated for
gait recognition. The results of this investigation showed
that the combination of HOG and MBH achieves the best
results. Therefore, we chose HOG and MBH (i.e., MBH,,
and MBH,) descriptors to construct the generic codebook.
The superior performance for the combination of HOG and
MBH descriptors over the rest is because the HOG captures
the static appearance of the person and the MBH incorporates
the changes in optical flow field. Therefore, they collectively
perform better in identifying a person using his/her appearance
and local motion characteristics.

B. Feature extraction

To extract trajectories from a video sequence, a sample
of dense points is chosen from each frame and tracked in
successive frames using the displacement information from
a dense optical flow field. Specifically, each point P; in
frame ¢ is tracked in frame ¢ + 1 using median filtering in
a dense optical flow field. The set of tracked points in suc-
cessive frames are concatenated to construct a trajectory (i.e.,
P, Piy1,Pito,...). Let us assume that L is representing the
length of a given trajectory, .S is the sequence of displacement
vector AP, = (Pi+1 — PL‘) = (mi—&-l — Ti, Yit1 — yi) and can
be formed as follows,

S = (AP, .....APiyp 1), (1)

The sequence vector S is then normalized by the sum of
the magnitudes of the displacement vector AP. That is,

D= o 2
SETHIAR|

The descriptor D define the shape of trajectory (i.e., the
local motion pattern).

C. Generic codebook generation

The local descriptors are used to build a signature (i.e.,
feature encoding), to characterize an image or video sequence.
Feature encoding is a process to transform the local descriptors
into a fixed length vector, usually using the vector quantization
and building a histogram. In the frame of this study, our local
descriptors (i.e., HOG+MBH) are encoded using Fisher vector
(FV) and a generic codebook based on GMM. FV is derived
from Fisher kernel [28]] and comprising the description of local
descriptors by its deviation from the generative model (i.e.,
GMM). The deviation is computed using the gradient of the
descriptor log-likelihood with respect to the model parameters.

We randomly selected one million features from each local
descriptor of CMU mocap sequences, to build a generic
codebook. The GMM define the distribution over feature space
and can be expressed as [29]:

P(X;0) = S5 wil (X i, 32 ©

where X is representing the local descriptors, i = 1,2, ..., K
is the mixture component (i.e., cluster number), w; is the
weight, /1; is the mean vector and ), is the covariance matrix
of ith component. Moreover, N'(X; p;,> ;) is describing the
D-dimensional Gaussian distribution and 6 = {w;, u;,
1,2,..,K} is the set of model parameters which can be
estimated using the expectation-maximization (EM) algorithm.

In a given set of descriptors X = {1, ...., 2; }, the optimal
parameters of GMM are learned using maximum likelihood
estimation. We used an iterative EM algorithm [30] to solve
this problem. The soft assignment of descriptor z; to cluster
1, also known as posterior probability is defined as,

WiN (@45 iy ;)
Zj’(:l WiN (45 15, 3 5)

We consider that each model describe a specific motion
pattern shared by the local descriptors in the codebook.
The EM algorithm of GMM performs soft assignments of
local descriptor to each mixture component therefore, the
local descriptors are assigned to multiple components (i.e.,
clusters) in a weighted manner using the posterior component
probability given by the descriptor. Unlike k-means clustering,
the encoded features provides not only the mean information
of codewords, but also the shape of their distribution. The
generic codebook clustering size (K) is empirically chosen
and is fixed to 256.
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Fig. 2. Proposed gait recognition model using generic codebook.

Fig. 3. Sample images from TUM GAID database. Normal walking (left),
walking with backpack (middle), and walking with coating shoes (right).

D. Generic Codebook based Gait Recognition Algorithm

The idea of generic codebook can be used in the en-
coding of any gait descriptor. In this section, we extend
our previous algorithm proposed in and couple it with
generic codebook. The algorithm exploits the spatiotemporal
characteristics of human motion to recognize the individuals.
It extracts the motion information of a walker from the gait
video sequence and s them into local descriptors, as described
in Sec. [I-A] These descriptors are encoded using a generic
codebook and Fisher vector encoding [28]], and they are fused
in a representation level fusion [29]. In all experiments, the
generic codebook is used to encode the local descriptors of
real gait sequences in the gallery and the probe sets. Finally,
the computed features are classified using Linear Support
Vector Machine (SVM). A block diagram of the proposed gait
recognition algorithm is shown in Fig. 2]

III. EXPERIMENTS AND RESULTS

The performance of the proposed method is evaluated on
two large benchmark gait databases: CMU MoBo and
TUM GAID [22]. The synthetic video sequences of walk from
CMU Motion Capture (mocap) database are used to build
a generic codebook. The proposed method is implemented
using Matlab R2016 software and experiments are carried out
an Intel corei5 2.6GHz machine with 8§GB RAM.

TABLE I
COMPARISON OF RECOGNITION RESULTS (%) ON TUM GAID GAIT
DATABASE. EACH COLUMN N, B, S, TN, TB AND T'S CORRESPONDS TO
A DIFFERENT EXPERIMENT AND AVERAGE IS COMPUTED AS SUM OF THE
WEIGHTED MEAN SCORES. BEST RESULTS ARE MARKED IN BOLD.

Method N B S TN TB TS Avg
GEI | 994 27.1 562 440 60 9.0 56.0
GEV [22] 942 139 877 410 00 31.0 6l4
SEIM | 99.0 184 96.1 156 3.1 281 66.0
GVI [16 99.0 477 945 625 156 625 773
SVI 984 642 916 656 313 500 814
DGHE IW 99.0 403 96.1 500 0.0 440 873
CNN-SVM [32] 99.7 97.1 97.1 594 500 625 942
CNN-NN128732] 99.7 98.1 958 625 563 594 942
Proposed 99.7 99.0 984 688 563 531 953

A. Performance on TUM GAID database

The TUM gait audio image and depth (GAID) database is
one of the largest gait database, contains 3, 370 walk sequences
of 305 subjects. The database was recorded at outdoor envi-
ronment of Technical University of Munich, Germany in two
different sessions. The first session of recording was held in
January 2012, which is the winter season in the region and
temperature was around -5°C, therefore, the subjects were
wearing heavy jackets and winter boots. The gait sequences of
176 subjects were recorded in this session. The second session
of recording was held in April 2012 and the temperature was
around +15°C in the region thus, the subjects were wearing
significantly different clothes and shoes. The gait sequences
of 161 subjects were recorded in the second session. There
is a subset of 32 subjects, who participated in both recording
sessions therefore, the database contains the gait sequences
of 305 subjects. The variation in clothing, shoes, lighting
and other captured properties make this database extremely
challenging in the field of gait recognition. Fig. [3| display few
sample images from the TUM GAID database.

Each subject in the database has ten walk sequences from
left-to-right and right-to-left, with three different variations
namely: normal walking (), walking with backpack (B) and
walking with coating shoes (5). The subset of 32 subjects
have ten additional gait sequences (i.e., in total 20) and can be
represented such as: normal walking after time (7'/V), walking



TABLE II
COMPARISON OF RECOGNITION RESULTS (%) ON CMU MOBO GAIT DATABASE. EACH COLUMN CORRESPONDS TO A DIFFERENT EXPERIMENT AND
AVERAGE (AVG) IS COMPUTED AS THE MEAN SCORE OF ALL THE EXPERIMENTS. BEST RESULTS ARE MARKED IN BOLD.

Methods A B C D E F G H I J K L M N (@) P Avg
SC [34] 100 100 92 92 80 48 48 84 28 48 68 48 28 32 44 0 60
ICA 23] 100 100 100 100 - - 79.2 64 - - - - - - - - 90.5
Shape kinematics [35] 100 100 92 92 80 48 48 84 28 48 68 48 12 32 44 0 59
STM-SPP [36] 100 100 100 - 94 - 93 91 - 84 82 82 - - - - 91.8
3D ellipsoid [8]] 100 100 100 - 78.6 - 70.5 - - - - 61 - - - - 85.1
WBP [37] 100 100 100 98.7 92 - 72.67 92 - 60.7 747 633 - - - - 85.4
Uniprojective [38]] 100 100 96 - 72 - - 60 - - - - - - - - 85.6
NDDP [39] 100 100 96 - 88 - - 80 - - - - - - - - 92.8
HSD [33] 100 100 100 - 92 - - - - - 88 84 - - - - 94
SDL [17] 100 100 98.7 - 96 - 86.7 92 - 88 86.7 88 - - - - 92.9
Proposed 100 100 96 100 100 96 92 100 100 96 92 92 88 100 100 88 96.3
TABLE III

LIST OF SIXTEEN EXPERIMENTS ON CMU MOBO GAIT DATABASE

Fig. 4. Sample images from CMU MoBo gait database. (a) Slow walking,
(b) fast walking, (c) slow walking with ball and (d) walking at certain slope
(i.e., incline).

with backpack after time (I7'B) and walking with coating
shoes after time (7°S). For classification, the same division
of database into gallery and probe set is used, defined in [22].
That is, the first four recordings of normal walk are assigned
to gallery set and the remaining two sequence of normal walk,
walk with backpack and walk with coating shoes are assigned
to probe set separately, in three different experiments namely:
N, B and S. For the rest of experiments, the gallery set
was same but the gait sequences of normal walk after time,
walk with backpack after time and walk with coating shoes
after time are used in probe set separately, namely: TN, T B
and TS, respectively. The performance comparison of the
proposed method with state-of-the-art techniques is outlined
in Tab. [ Our method outperformed the state-of-the-art in all
experiments except in 7'S where the CNN-SVM [32] performs
better than our method. The proposed method obtained the best
average recognition accuracy 95.3%.

B. Performance on CMU MoBo gait database

The CMU motion of body (MoBo) database comprising the
gait sequences of 25 subjects walking on a treadmill. Each
subject in the database has four variations of walk namely:
slow walking (.5), fast walking (F'), slow walking with a ball
in hands (B), and slow walking at certain slope (i.e., incline
(I)). The proposed method is evaluated on the sequences
recorded in lateral view to demonstrate its robustness in terms
of walking surface, walking speed and carrying condition. Few
sample images representing the different walking scenarios

Exp. Gallery set Probe set Type

A Slow walk Slow walk Same condition

B Fast walk Fast walk Same condition

C Walk with ball Walk with ball Same condition

D Incline walk Incline walk Same condition

E Slow walk Fast walk Across condition
F Slow walk Incline walk Across condition
G Slow walk Walk with ball  Across condition
H Fast walk Slow walk Across condition
1 Fast walk Incline walk Across condition
J Fast walk Walk with ball  Across condition
K Walk with ball  Slow walk Across condition
L Walk with ball  Fast walk Across condition
M Walk with ball Incline walk Across condition
N Incline walk Slow walk Across condition
O Incline walk Fast walk Across condition
P Incline walk Walk with ball  Across condition

in database, are shown in Fig. ] We conduct two different
types of experiments: (1) within the same condition, where
the same walking scenarios are used in probe and gallery set,
and (2) across the condition, where different walking scenarios
are used in probe and gallery set. Tab. [ITl] summarized the
description of sixteen experiments on this database. The per-
formance comparison of proposed method with state-of-the-
art techniques is described in Tab. [l The recognition results
reveals that the proposed method achieved excellent results in
all the experiments except C', where HSD [33]] perform better
than our method. It can also be noted from the results that
the performance of the proposed method is consistently better
than other competing algorithms on almost all experiments.
In particular, in the difficult set of experiments F to P, the
compared techniques performed rather poor and our method
consistently achieved more than 90% recognition accuracy in
most of the experiments. The proposed method obtained the
highest average recognition rate 96.3%.

The performance evaluation of proposed method, presented
in Tab. lll and lLl| confirm its effectiveness on two benchmark
gait databases which contain diverse variety of gait sequences.



The proposed algorithms showed very convincing results
outperforming the state-of-the-art in most experiments. High
recognition accuracy also confirm that the proposed generic
codebook is capable to effectively encode gait sequences.
In particular, the average recognition performance of the
proposed algorithm is the highest on both of the gait databases.

IV. CONCLUSION

This paper proposed an idea of generic codebook for gait
recognition. The contribution of the paper is twofold; first, a
generic codebook is proposed to encode the gait signatures
which presents a number of advantages over the conventional
database specific codebooks. The proposed codebook is built
using the motion descriptors, computed on a set of large,
diverse synthetic gait sequences with variety of walking styles.
Second, a gait recognition algorithm based upon the generic
codebook is presented. It exploits the spatiotemporal motion
characteristics of human’s walk and encodes the motion de-
scriptors using generic codebook. In contrast to existing gait
based person identification techniques, our method neither
requires the gait-cycle estimation nor the extraction of human
body from the video sequences. The recognition results on
two large benchmark gait databases confirm the effectiveness
of generic codebook and its application with proposed method.
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